STUDIES ON THE ROTATIONAL SPECTRA OF MOLECULES USING MICROWAVE AND RADIO FREQUENCY-MICROWAVE DOUBLE RESONANCE SPECTROSCOPY

DISSERTATION SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF THE UNIVERSITY OF CALCUTTA

Alokmay Datta

SAHA INSTITUTE OF NUCLEAR PHYSICS

CALCUTTA

APRIL, 1987

CONTENTS

Page No.

Preface

Synopsis

Acknowledgement

List of Publications

Chapter 1. The Basic Theory of Microwave Spectroscopy

- 1.1. Introduction
- 1.2. The Molecule as a Rigid Rotor
- 1.3. The Rigid Symmetric top molecule
- 1.4. The Rigid Asymmetric top molecule
 - 1.4.1. Qualitative Survey
 - 1.4.2. Energy-levels of a rigid asymmetric rotor
 - 1.4.3. Symmetry classification of asymmetric top wave functions
 - 1.4.4. Selection Rules and Intensities
- 1.5. Centrifugal distortions in a molecule

1.6.	Derivation of the Structures of Molecules
	from Microwave Spectroscopy

- 1.6.1. Some General Remarks
- 1.6.2. Relation between molecular dimensions and moments of inertia
- 1.6.3. Kraitchman's Equations for isotopic substitutions
- 1.6.4. Single-substitution in a Planar Asymmetric Top
- 1.6.5. Determination of Molecular Structures: Two Approaches
- 1.6.6. The Vibrationless State: Equilibrium Structure and Effective Structure
- 1.6.7. Substitution Structures: An Outline
- 1.6.8. The Inertia Defect
- 1.7. The Least-Squares Analysis
 - 1.7.1. An Outline of the Technique
 - 1.7.2. How to use the Technique
- 1.8. References

Chapter 2. The Double Resonance Phenomenon

- 2.1. Introduction
- 2.2. The Double Resonance Phenomenon in general
- 2.3. Population distributions in presence of radiation and dominant line-broadening mechanisms
 - 2.3.1. Doppler Broadening
 - 2.3.2. The two-level system in presence of collisional broadening

- 2.4. Three-level Radio Frequency-Microwave Double Resonance (RFMDR)
- 2.5. Off-resonant conditions
- 2.6. Application in spectral assignment

Appendices

- A. Schrodinger Equations for the three-level system
- B. The value of $a_2(t-t_0)$ in three-level system for one-photon transition
- C. Calculating the Integrals
- 2.7. References

Chapter 3. Stark and Double Resonance Modulated Microwave Spectrometers

- 3.1. Introduction
- 3.2. The Stark Modulated Spectrometer
 - 3.2.1. Basic Principle
 - 3.2.2. The Spectrometer
 - 3.2.3. Microwave Sources
 - 3.2.4. Absorption Cell
 - 3.2.5. Detection System
 - 3.2.6. Frequency Measurement
 - 3.2.7. The Set-up

3.3.	Radio Frequency-Microwave	Double	Resonance
	Modulated Spectrometer		

- 3.3.1. Double Resonance Modulation
- 3.3.2. The Set-up
- 3.3.3. A Performance Check of the Spectrometer
- 3.3.4. Intensity and Power Considerations
- 3.4. Sensitivity
- 3.5. Resolution
- 3.6. Accuracy of Frequency Measurement
- 3.7. References

Chapter 4. Microwave Spectral Study of 2-fluorophenol: Cis Conformer

- 4.1. Conformations and Conformers
- 4.2. Conformers and Microwave Spectroscopy
- 4.3. Conformations in Halophenols
- 4.4. Microwave Spectral Study of 2-fluorophenol
 - 4.4.1. Introduction
 - 4.4.2. Experimental Details
 - 4.4.3. Assignments and Results
 - 4.4.4. Molecular Structure
- 4.5. References

Chapter 5. Microwave Spectral Studies of 3-fluoro- and 2-fluorobenzonitrile

- 5.1. Introduction
- 5.2. Microwave Spectral Study of 3-fluorobenzonitrile
 - 5.2.1. Experimental Details
 - 5.2.2. Observed Spectrum and Assignment
 - 5.2.3. Molecular Structure
- 5.3. Microwave Spectral Study of 2-fluorobenzonitrile
 - 5.3.1. Experimental Details
- 5.3.2. Observed Spectrum and Assignment
 - 5.3.3. Molecular Structure
- 5.4. A Comment on these Investigations
- 5.5. References