ON THE PRESSURE OF LIGHT

was found to be always in the right direction. When the
filament lamp was used as the source of light, all irregu-
larities due to the variation of the source of light vanished.
As soon as light is struck, the spot of light slowly creeps
up towards the new position of equilibrium about which
it oscillates in accordance with the equation (i).

Ultimately the oscillation dies away and the spot becomes
quite steady, which could be maintained for 15 minutes
(we did not try to keep the spot steady for a greater length
of time because the tungsten filaments, being kept in a
horizontal position, are gradually deformed on account
of their plasticity at the high temperature within the lamp).

In one set of experiments one of the vanes was silvered
while the other consisted of two clear pieces of microscopic
cover glass. We found that when light was allowed to fall
on the clear glass surface there was practically no deflection.
In another set of experiments one of the vanes was silvered
and the other was lampblacked. It was found that generally
if the source of light was not too intense, the deflection of
the black surface was approximately one half of that of
the silvered one. If the source of light was very intense so
much heat was absorbed that the junctions (which were
all of shellac) melted off. Quantitative experiments were
therefore impossible with that surface.

©ne of the results of our quantitative experiments is
given below:—

-

- Mean deflection (mean of several experi-

9

(without allowing for absorption or reflexion) is equal to
6 0x 107 x (3-25)2

2y SOXBAXIT XN 48104 dynes ().

The pressure calculated from deflections is equal to
2:3 %1078 x 14-25=3-33 X 10~* dynes (B).
The observed pressure is about 70 per cent of the expres-
sion (A), which is the pressure calculated on the supposition
that the whole amount of energy given out by the filament
is freely transmitted by the various glass media, and is
totally reflected by the silvered surface. As a matter of fact,
none of these assumptions is correct. If T is the fraction of
total energy transmitted by thick glass, and p be the reflect-

ing power of a silver glass-surface the actual pressure
should be

Pod (144) (1)

where P, is the quantity (A). N

According to the experiments of Rubens and Hagen’
p=90-5%, unfortunately no data is available for the trans-
mission coefficient, but on account of the preponderance of
rays of short wave length in the spectrum of the light from
a tungsten filament, it cannot be less than 80%.

“Considering these facts, we are probably justified in
asserting that the agreement between observed and theore-
tical values is at Jeast qualitatively quite good. On a future
occasion we hope to return to the problem of a rigorous
quantitative determination of total incident energy.

In conclusion, we beg to record our best thanks to Prof.
C. V. Raman, and the teaching staff of the University
College of Science, for the interest they have taken in the
work; and to Mr. N. Basu, B.Sc., for much useful help.

ments) =28-5 Divns.
Distance of the scale from the mirror =100 cm
Distance “d” of the plane of the filament

from the diaphragm =73 cm

Therefore the upper limit of the total theoretical pressure

"Obtained by extrapolation from the data of Rubens and Hagen
on the supposition that the maximum emission of energy from a tungsten
filament is at 1 p [Kohlrausch, Praktische Physik, Tabellen].

5. ON THE DYNAMICS OF THE ELECTRON*
(Phil: Mag., Sr. VI, 36, 76, 1918)

Mass as a fundamental physical concept has been
introduced into Physics by Newton’s Second Law of Motion,
which may be said to form the corner-stone of classical
Mechanics. But in spite of its splendid success, physicists
have always encountered some difficulty in realising mass
as a fundamental physical concept in the same sense as
the concepts of time and space. The fundamental object
of mechanics is to provide a scaffolding by means of which
the motion of material bodies can be surveyed and followed,

*Communicated by Prof. A. W. Porter, F.R.S.
2

when these are subjected to various disturbing influences.
Some hypothesis must be introduced for taking into account
the influences of these disturbing agencies. The question is:
“Are Newton’s Second Law of Motion and the ideas under-
lying it quite sufficient for all possible cases of motion,
or are we to search for some more general principle ?”
Some physicists are in fact in favour of introducing Energy
as a more fundamental physical concept than Mass,
thereby basing the Science of Mechanics on various Energy-
theorems. M

So long as we hold to the principle of invariability of
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mass, there can of course be no question about the utility
of the second law. But in the electron We have a physical
entity which defies this limitation. If we want to survey
its motion, and have no other means of doing so than
classical mechanics, we must ascribe to it a certain mass,
but for aught we know this mass is neither definite nor
invariant during motion. Consequently the scaffolding
which enables us to study and survey the motion of material
(i.e. non-electrical) particles breaks down in this case.
Some other system of Mechanics other than Newtonian
must be formulated. In this attempt, we must remember
that the electric charge is the only invariant physical
quantity, consequently in place of mass, this quantity
ought to appear in the equation of motion. We must also
take cognisance of the newly discovered relations between
time and space which are embodied in the Principle of
Relativity. » :

I may be allowed to remark at this place that though
the inadequacy of classical mechanics for studying the
mution of electrons is now admitted on all hands, and many
attempts are being made for formulating the exact dyna-
mics of the electron,—the authors of many of these theories
have not been able to rid themselves of the preconceived
ideas of classical mechanics. I shall, in the first place,
explain my own method, point out the characteristic
features of my theory, and then compare it with other
theories.

1.

The equations of motion of a material particle are derived
from Newton’s Second Law of Motion—rate of change of
momentum is proportional to the force applied. Combining
this principle with the principle of constancy of mass during
motion, we obtain

2x 2y &z
m—(m—X, miﬁ—l’; mF—Z.

d*y 42
The terms md_t:’ m#, mi: are known as the compo-

nents of the “Effective Force”, and the law may be expres-
sed by saying that the “Effective Force” is equivalent to
the “Impressed Force”.

In the case of the Electron, we hold to the axiom that
the “Effective Force is equivalent to the Impressed Force”.
No prima facie reason can be given for the introduction of
this hypothesis, just as in the case of the motion of material

bodies. It is to be justified by its success in dealing with
the problem at hand.

2.

The Impressed Force on the electron can be easily cal-
culated with the aid of Lorentz’s Theorem of Pondero-
motive Force. If (X, 7, Z) be the components of the electric

field, (L, M, N) be the components of the magnetic field
at any point, and p be the density of electricity, the com-
"ponents of the force per unit volume at the point are

fu=p [X+ > (0 N—0, M) |
fr=p IT+2 0 L=0, )] &,
fi=p [Z+; (0 M—0, 1) ]

(v1, vy, v,) being the components of the velocity with which
the charge moves.

The rate at which work is done is given by the equation
Je=fo vitfy vatf, g
=p [X 01+Tvz+Z va].
In accordance with the ideas of the Principle of Relativity

we can write the components of the force-four-vector in
the form

fw=P0 [
Jv=po [fu w;
Js=po [ 0, fa1+w, far

Ji=po [ w1 faat+10s fratws fis

these equations are obtained by writing?®

faasfavfm fOI‘ L: M: -N’A
f14,fz4,f34 fOI‘ -1 (X’ I; Z)’

+f12 Wy+ws f13+wy fia ]
W faztwy fos ] cee(D)
+w4fa4:]l .

1
wy, Wy, Wy, w, for Vi [21/c, vafe, vge, ],

po for p A/T—2%/c2.

For finding out the total force on the electron, we have to
integrate the above expressions for the force-four-vector
over the whole volume of the electron. Supposing that the
components of the electric and magnetic force do not
vary throughout the volume of the electron, the force-
components are obtained by writing simply (¢) the invariant
charge instead of (p,) in equations (1).

3.

The calculation of the Effective force is a matter of some
difficulty. The question is: “If an electron moves with a
variable velocity, what are the terms corresponding to
th .0 d d¥%  d?z\, icled s 99

€ quantities (m prEk mgt—é, mﬁ) 1 particleaynamics ?
Einstein solves the difficulty by saying that instead of the
observer’s time d¢ we have to introduce here the proper
time (Eigenzeit) of motion of the electron. This conclusion?
is reached in a general way from his theory of the equi-
valence of the forms for equation of motion of material
particles when referred to systems moving with uniform

1The notation used throughout the paper is that of Minkowski, vide
Math. Ann. Vol. Ixviii, p. 472 et seq. § 12, where this particular theorem
occurs in an abbreviated form.

2 A, Einstein, Jakrbuch der Radioaktivitat, Vol. iv. 1907
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velocity past each other. Minkowski® practically uses the

same hypothesis as I have done (Effective force is equivalent,

to the Impressed force), but in case of the electron he begins
by implicitly ascribing a rest-mass to the electron. But the
method adopted by me is fundamentally different, as
will appear in due course. Elsewhere, Minkowskit deduces
it from the Principle of Least Action, combined with the
principle of conservation of mass in a space perpendicular
to the axis of motion. Besides, the investigation has a direct
bearing on the theory of Electromagnetic momentum as
developed by Lorentz and Abraham.

4.

. Let us now concentrate our attention on a single electron

moving with a velocity ». The force components at an
external point due to the motion of the electron are given
by the equations (1). Generalising or rather recasting
Maxwell’s theorem of stresses into new forms, Minkowski
has shown that the force components (f,, f,, fi, f;) can be
put into the forms

. X, X,
fe= ax a; az +WW
_ 31, |, 9, o7,
. S= T ”+§ o ) o
PR Y azur @
3 ay
_ BL,, L, 6Lz
f'_~ax + Bz T
. _
where X,= g;[ﬂsz Hfa® Hae? 12111

: .(3)
X,= 4_1r[flsfaz +f1a fael

The theorem is proved by substituting, in equations (1),
the values of p,w,, p,a, potss oty obtained from the funda-
mental equation
lor f=4mp,(w,, ws, ws, wy)
and effecting the necessary transformations with the aid
of the second fundamental equation
lor f/=0.5
In the present case, the field is due to a single moving
charge. The quantities [X,, X,, . ..] can be easily calcula-
ted from the Potential four-vector a, for the six-vector f is
equivalent to curl a.
In a paper’ communicated sometime ago to the Philo-
sophical Magazine, 1 have shown that the Potential four-
vector a at an external space-time point (x', ¥, 2’, I’) due

sH. Minkowski, “Raum und Zeit,” § . Phys. Zeit., 1911.

¢H. Mmkowskl Math., Ann., vol. ’ Ixvii, Appendix.

5Tt seems to have escaped the notice of i investigators on this particular
subject that the Potential four-vector in the form given by me is impli-
citly contained in a statement of Minkowski’s (“Raum und Zeit,” §5).
The passage came to my notice only recently when I was g a
critical study of Minkowski’s works,

-

to the motion of a charge ¢ occupying the point (x, , z, )

. . ew
is equivalent to R where

w is velocity four-vector = ( dx dy dz dl)

ds’ ds’ ds’ ds
and R is the perpendicular distance fiom the external
point on the line of motion of the electron. We have
Re= (=) (y—y )2k (a—2') 4 (I—1')2
F(x—x") wi+(y—") wyt(2—2") we+(I—1) w,]?

We have now

f= ?,%?_* —2—:: (h, k=1, 2, 3, 4),
. p _ Oa, DOa; 0 [ew, 9 few,
e o =5 (7)o (R)
= ¢ (a,wy—a,w;);
where

_B /1y 81y 3l
al_ax/<7€)sa2"'@7(§>’a3’—a—zl("k)’

-l 1)
Y (ﬁ .

Therefore we have
’ 2
2= é—"'r[(azws—aawz) 2 + (03w4—a4w3)2+ (040-!2—0.2(04) Py

— (@103 —ay0,)%— (0,03 —aq0;) 2 — (2105 —ay09)%].
Now putting a?=q,2}a,2+a,2}a,2
and using the identity
aywy +aywytayw; a0, =0,
we easily prove that

ove
X=5[-aq —|—2w12)—|—2a12:| :
Similarly
2
1r,,=§—1r —a? (1+2w22)—l—2a22:| ,
-
,=f; —w1w2a2+ala2:|, &e.

We shall now calculate the total force on the space
exterior to the electron. According to the Principle of
Relativity, this space must be uniquely defined. In our
case, this space is perpendicular to the axis of motion of
the electron, and is bounded on the inside by the surface
of the electron. The external boundary is at an infinite
distance. Let 42 denote an element of volume of this space.
Then the total force is given by

o+ |

Fo=(foda= [Fe+ 5+ 3045 @
S

Now since a, and consequently flz, Sos - .y are
functions of the relative distance [(x—x), (y—5"), (2—2'),
(=01,
we have
X,
v

-

OX
T
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Therefore
) ) . 3
Fo—— [67 SX“‘QJ“a—y S X2t o 5deg
)
+8—15X, 49]-
Now
2
5' X,d0=F 5 [—a2 (142 g?) 42 a12] 0

5“9_4_7

We have now to calculate the value of the integrals
Ja,2dQ, [ay2dQ, [a0,dR, &c.

We have
= 8%’ (%) = T;'a [ (x—=")+w, {(x_x')wl‘l‘()"'ﬂ')wz
+(z=2as+ (=)} |-

Now let us introduce a Lorentz-transformation by means
of which the axis of motion becomes the new time-axis.
Let (& 9, v) denote the new coordinates. We have
then

[—wlwz a2+a1°'2:| dQ, &c.

(6—-¢") Ay A4y 4y Ay x—x'
(n—n") - Ay Ay Apy Ay =y’
(&) Ay Asy dyy Ay =z |
("_V') __A41 Ay Ay Ay = _
where 4;;2+4,,2 445,24+ 4p 2= }
and AlhAlk+A2hA2k+A3hA3k+A4hA4k_O

Since the line of motion is the new time-axis, we have
(v—v")=ilw; (x—x") twy(y—0) +ws(2—2") Fay(1—1)];
we have therefore
Ay=iw,, Ayy=iw,.

App=iwy, Ap=iw,,

Now using the above transformation, we have
RA=(¢{—¢£)*+(n—n")*+({-0)*
and
(x—x") Ftan[(x—2") o+ (0 ) wp+(2— 2" )wg+ (I—1") w,]
=dy (§—§')+An (n—n")+45 (1) +4y v—v')—

tw; (v—v')
=Ay (§—€")+4n (1—9")+43; (=0, for Ay=iw,.
Then

Sazm=A11 (f g)zd.Q—I—A 25(’7 ’7) 40
L0 00, 4, (0 g

Now we have, since the integration extends over the
space internally bounded by the sphere

(€—£0)*+ (n—m0)*+ (£ —L0)*=
£—¢) —7)? o (=¥
»S( R°) ‘19:5(7)122) M:S( -

+4*

Y a0y (%,

and from symmetry,
S(f §)(n 1) 40—0.

Now we have

fdg__g_ﬂ

Rz a’
4 4
5."'1 d_Q___Z I:Au +A212+A31] =_3—1‘; (14 w,?),
and
4
S a,ay dQ2=— —” I:An A21+A12 A22+A13 Aza]

==z [Au A24:| =—g, "%
2

4 4
X [T 02 125 (e |
282 9
= 37 (}"*‘wl )’

and e? 4r | 4 2¢?
X,= _a-:rl: —w Wy, — + 32 wlwg:l =3, ®19

Then we have similarly

2¢2 2 2
Tﬂ:‘é (i"l‘wzz)’ °

= (t+as),

2e2
Xl= 3a Wy, &ec. J

(5)
L=2 1w,

Now we have

262 0
Fo=— 32 [Bx (%'1’“’12) T A ) (w1w2) 52 (yw3)
)
+57 @) ],
i.e.

2 2
Fo=—3, [ (“’1 o +“’23y +“’$a +"’4az) @t

O0w; Ow,  Owz; Jwg)
o (5 + gt et ar) ]

The second term=0 from the condition Div a=0,
for this gives

0 ew, 0 few, 0 few, 0 few)
(%) +5 (%) +a: (%) +a(®) =
e —]l? Div @+ (w,0; +wyas+ wyas+w,a,) =0,

from which Div w=0, for the last term is identically zero,
The X-component of the force on the external space

2¢? d%x d 0 ) 0 0
_—% Zs-z—, for 2;— wla—{— w25y+ w352+ w4a—l (6)

We may interpret this force as the reaction of the electron
on the external space, which is supposed for purposes of
substantiation to be composed of aether. The effective
force on the electron is equal and opposite to this force,
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and has therefore the components
222d% 282d% 2824z 262 d%
30 ds®’ 3a ds®’ 3a ds®’ 3a ds®’
(N.B.—We have for small velocities ds=cdt approxi-

mately,
*Ba dst Bac® di*’ <

We therefore observe that the quantity —; 3 plays here

2%
the same part as the mass m,. We can therefore call Tt

the rest-mass of the electron, and put it equivalent to m,.

5.

Now a few remarks on the equations (2). These were
first introduced into Mathematical Physics by Maxwell
about 1865. Ever since their introduction, various efforts
have been made by different investigators for getting
something out of them, and in certain cases they have
yielded very valuable information, and led to many
important results. We may cite for example, Maxwell’s
prediction of the existence of Radiation Pressure. The
close analogy of the equations (2) with the equations of
clagticity led Maxwell to propose his famous theory of
“Stresses,” i.e. to imagine that the electric forces are
due to a distribution of the stresses (Xx, Xy . ..) in aether,
which behaves in this case like an elastic solid. But this
theory is fraught with many difficulties, which have been
pointed out from time to time by several investigatorsS.
In a paper’ communicated to the Phil. Mag., the author
observed that though the forces can be well accounted for,
the Energy of Electrification cannot be accounted for on
Maxwell’s hypothesis.

Another direction in which the equations (2) have been
exploited is the subject of Electromagnetic mass of an
electron. When an electron moves with a certain velocity,
it creates round it an electric as well as a magnetic field.
We can say with Maxwell that the energy is stored in
the aether, and the electron by its motions exerts a force
on every particle of aether.

If we now integrate this force over the whole spaces
exterior to the electron, the first three terms involving
(;x’ %, %) can be reduced to a surface-integral. The
bounding surface is taken to be at an infinite distance,
thereby the surface integrals are made to vanish. The
total force on the aether thus comes out in the form

a1 om
dl Il ot

$Maxwell, ‘Electricity and Magnetism’, third edition, Vol. i, chap. v,
footnote p. 165.

"Phil. Mag., March 1917,

8N. B. This space is the absolute space of the Pre-Relativity Period.

Now assuming that the force exerted by the aether on the
electron is equal and opposite to the force exerted by the
electron on the aether, the reaction of aether on the electron

becomes equivalent to — 1 %

i ot In analogy with Classical

. iM
Mechanics, we can call (T) a momentum.

This is, in brief, the theory of Electromagnetic momentum
as developed by Abraham, Lorentz®, and others. We do
not enter into a discussion of the rival theories of Lorentz
and Abraham on the shape of the electron during motion.
The electromagnetic mass is obtained from either of the

iM M .
relations m;= o and m,—zaa , m; and m,; denoting respec-

tively the transverse and longitudinal masses of the electron.

But several objections can be raised to this theory of
Electromagnetic momentum. In the first place, the inte-
gration is extended over the space of the observer, whereas
the Principle of Relativity requires that it should e
extended over the space perpendicular to the axis of motion
of the electron, and external to the volume occupied by
the electron. This is what I have done in the foregoing,
-and I believe that this is quite in keeping with Minkowski’s
ideas of equivalence of time and space. Secondly, the
volume of integration is supposed to be bounded by a sphere
at an infinite distance only, and no notice is taken of the
internal boundary which must coincide with the surface
of the electron. In fact, it looks as if the surface integrals
had to go, because the authors wanted to get rid of them.

In the theory proposed by me, I have refrained from
putting any interpretation on the quantities (X,, X,, ...).
Taking the theorem as it is, the total effective force on
the aether has been obtained by integrating f over the
whole space perpendicular to the axis of motion of the
electron, the space being bounded on the inside by the
surface of the electron. The “Effective force” on  the
electron has been taken to be equal and opposite to this
force. '

I may be allowed to point out here that this procedure
by no means confers substantiality upon the aether. It is
a fictitious creation, introduced for the sake of arriving
at a result which, from its very nature, can be attempted
only by indirect means.

It is remarkable that none of the quantities [ X,dQ,
& ¢. vanish in this case, as in the other theories. The
“Effective” force on an electron, instead of simply being the rate
of change of ‘‘Momentum’ becomes the sum total of the time-rate

of change of the quantity g’ dQ plus the space-rates of changes

qfthe‘quantitie:’.g £ dQ, S % aQ.,.

*Lorentz, ‘“Theory of Electrons’, chap. 1, § 26 et seq.
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These latter quantities involve ““velocity’”, in the second order,
X, df2 involves “‘velocity” in the ﬁ:;;t order, so that
ol
when the velocity is a small fraction of the velocity of light, the
theorem approximates to Newton’s Second Law of Motion.

The rest-mass calculated on this basis is equivalent to

whereas

2
3 ;—2 and as such coincides with the value obtained by

Sir J. J. Thomson for slow-moving electrons, and with

that obtained by Lorentz and Einstein. The variation of
mass with velocity is determined by the Principle of Rela-
tivity as in the theories of Lorentz and Einstein.

In conclusion, I wish to express my thanks to my friend
and colleague Mr. Satyendra Nath Basu, M.Sc., for much
help and useful criticism.

Calcutta University College of Science,
Physical Dept., July 10, 1917.

6. ON THE INFLUENCE OF THE FINITE VOLUME OF MOLECULES ON
THE EQUATI‘ION OF STATE*

M. N. Sasa & S. N. Basu
(Phil. Mag., Sr. VI, 36, 199, 1918)

It is well known that the departure of the actual behaviour
of gases from the ideal state defined by the equation

= J—Vf} is due to two causes: (1) the finiteness of the volume

of the molecules, (2) the influence of the forces of cohesion,
i.e., the attractive forces amongst the molecules. van der
Waals was the first to deduce an equation of state in
which all these factors are taken into account; according
to van der Waals, we have s
NKO a

p=20 2 M
where b=4 X volume of the molecules, a defines the fqrccs
of cohesion. :

In all subsequent modifications of this equation (Clausius,
Dieterici, or D. Berthelot), the changes which have been
proposed all relate to the influence of the cohesive forces;
the part of the argument dealing with the finiteness of
molecular volumes is generally left untouched.

But it has been found that the results of experiments do
not agree with the predictions of theory if we regard ¢ and
b as absolute constants. Accordingly it has been proposed
to regard both a and b as functions of volume and tem-
perature.*

But before proceeding to these considerations, it is
necessary ' to scrutinize whether the influence of finite
molecular volumes is properly represented by the term b&.
From theoretical considerations, the conclusion has been
reached that this is not the case. The argument is as follows:
According to Boltzmann’s theory,

the entropy S=K log W-C,

*Communicated by the Authors.

1Compare van der Waals, Proc. Amst., 1916; Van Laar, Proc. Amst.,

vol. xvi. p. 4.

R @"8175 (f’@
SHir

where K'=Boltzmann’s gas constant, W=probability of the
state. Let us now calculate the probability that a number
of N molecules originally confined within the volume V,
and possessing finite volumes, shall be contained in a
volume V. Neglecting the influence of internal forces, the
probability for the first molecule is .,

o
cule the probability is II;:—% , where B=8 X volume of a

. =

for the second mole-

single molecule, for when the first molecule is in position,
the space enclosed by a concentric sphere of double the
radius of the molecule will not be available for the second
molecule. The available space is therefore ¥— 8, whence

the probability is II; :% Introducing similar considerations

for the rest of the molecules, we have
_V V-8 V-28 V—N—-18
W= V. VB Vim28 " V1P @)
We are, of course, neglecting those cases in which partial
overlapping of the regions occupied by two or more mole-
cules occurs; for the number of such cases can at best be a
small fraction of the total number. Even cases of actual
association do not include these, for in that case, two discrete
molecules become merged into one, without their outer
surfaces being actually in contact.
From the relations S=K log W+C

o8\ _ p
and (—8—17) u———o-'

_we can easily verify that

__ Ko V1B

__ R, V-2
T S I

(R=NK) ©)



