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ABSTRACT

A critical review is given in this article of Prof. S. N. Bose’s paper
published in this journal. It is shown that when the collision frequency
is taken to be zero, his method gives us the same result for the propa-
gation of wireless waves as that of the earlier workers. The conditions
of reflection which he has deduced for the case where collision cannot
be neglected appear to require revision.

The propagation and the total reflection of electro-
magnetic waves in the ionosphere has been the subject of
numerous investigations within the last ten years, a full
bibliography of which is given under the references. A
critical review of these papers shows that there are many
points connected with this problem which have not yet
received adequate explanation. In his pioneering work on the
magnetionic theory, Appleton (1932) did not actually solve
the relevant Maxwellian Equations but expressions were
obtained for the refractive index from a calculation of the
dielectric constant of the medium, which is supposed to
consist of a number of free electrons and ions. The displace-
ment of these under the magnetic field which is limited by
collisions with neutral particles and positive ions constitutes
the displacement current, which is necessary to calculate
the complex dielectric constant. Appleton’s method is
usually known as the ray theory of propagation of the
electromagnetic waves. The refractive index comes out in
general to be a complex quantity and has two different
values depending upon the state of polarisation of the wave.
Further it is a function of the electron concentration and
collisional frequency, both of which are functions of height.
Consequently the wave equation becomes too complex for
solution. From the analysis, it follows that the original wave
splits up into two ordinary and extraordinary, which are
propagated with different velocities, as in a doubly re-
fracting medium. He supposes that in the. case when
collisions can be neglected, the wave gets reflected from the
layer where the refractive index becomes equal to zero.
This enabled him to obtain the conditions of reflection
involving the electron concentration and the frequency of
the wave, which are now well-known and have received
verification at least in the case of the F-layer.

A number of other methods has been proposed of which
we may mention that of Forsterling and Lassen (1933),
Saha, Rai and Mathur (1938) and that of Hartree (1931)

.

developed further by Booker (1935). The works of these
authors lead to the same value of refractive index as that of
Appleton, though originally they aimed at obtaining
different results.

Recently Prof. S. N. Bose (1938) of Dacca has tackled the
same problem by the method of characteristics, used for
wave propagation by Hadamard, Debye and others. He
confirms in general the conclusions of the previous investi-
gators when collisions can be neglected, but gives new
results when the collisions cannot be neglected. His results
are, however, expressed in rather unfamiliar symbols,
hence it is difficult to compare them with those of earlier
workers and apply them to the elucidation of outstanding
problems. The object of this paper is to examine his methods
and results critically, to express them in a language easily
comprehensible to workers on the ionosphere, and to find
out how far the results obtained are new.

As we have to make a constant comparison between
Bose’s paper and the paper previously published by Saha,
Rai and Mathur as well as those of other workers, we will
refer to the latter as paper I.

The fundamental equations for propagation can be
written as

—_ —

1 dE g p

+ g —CuwlH= 2% (1)
st -

1 dH

- 7 + Curl E =0. (2
pa—

Div H =0. (3)
- ' i

Div E =p. (4)

" These equations may be compared with (1.1) of paper I. ,

Bose has used E, while in paper I, D was used. But D =KE+
- — — —

P, K=1, and P=N¢V, where V is the velocity of electrons.
P is therefore the displacement current, a term denoted by
Bose by the symbol 6. For his 6,, which is electrical density,
we have used p. The fundamental equations used here, are
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of the same form as those of Booker.5 The equations satisfy
the conditions of continuity

d ey
?’t’ + Div (pV) =0. (5)

Let us now suppose (see Bose, p. 122) that every quantity
vary as ¢, where S is the phase. For a plane wave

S—ip [t’— (lx—{—mg-l—nz)]

where p is the pulsatance=2nf, f being the frequency of
the wave, (/, m, n,) direction-cosines of the wave-normal,
g=refractive index. In general, (/, m, n) and ¢ may be
functions of (x, y, z). Anyhow, no limitation is put on the
form of S except that it is a function of (x, y, z, t). Then
the above equations reduce to

%E—( ASxH) =—§. \ )
SE o @
(ASH)=0. | 3)
(AS.E)=p. | )
$p-+(P. AS)=0. G

—_ — S -—
Here the supposition is that if E=Ey¢, E, is a slowly-
varying function of (x, y, z, t), i.e.,

: dE, dE,
E;S> > E, S, > >—

From (2), by scalar multiplication with H, we have

= — :
- (E. H)=0. R (6)
From (1), by scalar multiplication with H, we have
g :
(P. H)=0. (7

— - —

(4), (6), (7) show thatE, P, AS are all normal to H, and

—_—
hence lie in the plane perpendicular to H. But neither E,
nor P are in general normal to AS, but from (1) we have

1.2 - — —

SSE+P)=(ASxH). ®)

L = - -
i.e., the yector SE+P is normal to both AS and H.

: —_
* To find out P, we take the equation of motion of the

electrons and ions. Let the displacement of these particles

due to the radio-wave be u=(¢, 1, {). Then the cquafion
of motion is o : B

mii=eE— gi-+ (i X 7). " (9)
This is a vector equation, identical with equation (1.3)

of our paper I, and equation on p. 131 of Bose. Now we
have

P=Na, p=Nu
Hence replacing ;by 1;7Ne, we have
T, 2 N2> - — Ly
P+vP=7 E+(Pxh). (10
Or using the symbols in (1-4) of papér I and putting
S
(4

- —
P="P,

we have ($+V)P=ﬁ§ E4(P xpy). (10")
h. Ne?
where ﬁ;.=;Tc 2038 =

This is a vector equation and is equivalent to three
“different equations. ‘

THE EQUATION OF PROPAGATION
Multiplying (20) by AS vectorially, we have

%(ASXH)—{—ASX(ASXE):O.

since (AS xH) =17(S E+p)
— — - — — —
ASX(ASXE)=AS (AS. E)—E2( A2S)
=p AS—EA?S.
Here AZ%S means (AS)2. We have
<F—A28>E—|- Sirens=0. ..y

Now making use of the equations (5) and (10), we get
the following vector-equation in P

PS 1|82 Sy e el T AS (P. AS
—02—=p—3[? — A?'S:l I:(S—I—v) P—(P xp,,):|= —(—s——)
, . (12)
This is equivalent to three equations, and the operations

which-we have carried out here is similar to those in § 2
of our paper I.  /

The three vectok equations (12), can be written out

in a form more convenient for work by introducing some




280

fresh notation. Here we are closely folfowing Bose’s proce-
dure on pp. 137-138 of his paper.

We put
s )
£(8)=25— A'S.
pS)=8E+»+r8 . L a3
L(s)= (G- a%8) [8(5+0)+Ps | +P3as
=g(8) p(8)+p3 A*S. )
(12) can now be written as

L(S)P—$ g(S) (BXPp)=p3 AS (b. AS). (14)

Writing out in full, we have

P.IL(S) —p81S3-+P, [T, —S,8, $31+P.[—T,—5.5,03]=0
P[—T,—S,8,p3]+P,[L(S) — p38;]+P.[T.—5,5,05] =0
P.[T,—S.S:$3]1+P,[—To—S,8:p3] —P:[L(5) —33173]( ;;)

> .
where T=(T,, T,, T,)=—S g(S) p»-

Since the equations hold simultaneously, the determinant
of their co-efficients vanish. From this condition we get
after some work

LA(S) —LA(5) 41573 + LSS k- S Op A5

Now (AS . )= \S . cos «,

where« is the angle between p, the direction of the external
magnetic field, and AS the wave normal. Further, since

L(S) —pg A*S=¢(8S) p(8),

we find that g(S) cancels out as a common factor. Equation
(16) reduces to ‘
£(S) L2(S) — 52 g(S) 4 L(S) —§% ¢(S) php3 A" cost=0
(17)
(16) and (17) are identical with the equatxons given by
Bose on p. 142.

Bose points out that from equation (17), we can calculate
the value of the refractive indices. As (17) is a quadratic
equation we get two values for the refractive indices, ¢;
and ¢,. But he does not proceed further to find out the
actual values of ¢;, and ¢,, and compare them with the
results of earlier investigators. This we now proceed to
do, and we shall show that we get the same value for ¢;
and g, as obtained on p. 63 of paper I for the o- and
X-waves.

Let us put

=i§_§i_ and S:ip
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This is equivalent to taking
S—ipt¥ 2 {q(tds-+ mip-+ndz),
and for vertical propagation.
S=ipiF _’zcﬁ sqdz.

Now (g, ¢gm, gn) may be any functions of (x, », 2); ¢
may be called the refractive index. p= 7 $ is constant,

and prescribed by the conditions of the experiment.
Then it can be easily verified that if we put

r=p3lp?

we have for vertical propagation, i.¢,, S,=S,=0, S,;=1,

e&)=—5x ()= r—B)

1—¢*=x, I_T_S

L(S)= 4 (r— #f)

and equation (17) reduces to
C'x24-xr[2B(B—7) + w? sin 2a] —r2(r—B) =0
Here C’ is the quantity -

—B(B— ) —r(f*—w? cos a)
defined in equation (2:18) of paper I.

(18)

It can be shown after some work that the roots of equation
(18) are given by

Cx=C'(1—-¢)=—1rB(r—B )——2—2 sin%a
4(r——,8) cos?q
[ \/l-i- PRI, :I (19)

B2+1B) __r2_w2 sin2a

e

If we neglect collisions, i.e., put B=1, we can easily deduce
that (20) reduces to the values of ¢, and ¢, given in (3-10)
of paper I. Hence we have proved that for vertical pro-
pagation, Bose’s treatment gives the same result as that
of earlier workers.

We get from (19)
C'¢=(r—p)(w?—

(20)

w? sinfa

4v(r—/3)—2cos2a]

CoNDITIONS FOR REFLECTION OF
THE E. M. WAVE rroM THE
JONOSPHERE

Let us now critically examine Bose’s work as far as it
deals with the conditions of reflection of the o- and x-waves
from the ionosphere. In the original treatment of Appleton,
it was supposed that the waves get reflected when ¢, the

-refractive index, becomes zero, in the cases where collision
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frequency can be neglected. This gives the well-known
conditions of reflection.

Nez
o-wave —=p?%;
, (21)
x-wave Nﬂ: 2L ppy.

It is supposed that the reflection represented by - sign
does not occur, as the x-wave gets totally reflected from
a lower height corresponding to the negative sign. Under
these supposmons, we should have for Allahabad for f=4
Mc/sec o

fo—fF="65 Mc/sec.

While this has been verified in general, Pant and Bajpai
(1937), at Allahabad obtained on several occasions,
difference of a quite different order:—it was found that
for f=4 Mc/sec. '

fo—fF =14 Mc/sec.

This was explained by R. N. Rai (1937) from the idea
that waves are returned from the ionosphere, when their
group-velocity of propagation becomes zero. From this,
he deduced when collisions can be neglected, in addition
to the Appleton conditions, a new condition of reflection

NE_po £ EYY

This gives us exactly
— fi="14 Mcfsec.

Thus the new condition explains completely the result
obtained by Pant and Bajpai.

The question now rises: Both Appleton’s criterion
(g=0), as well as that used by Rai (group-velocity=0)
are, at best, assumptions. Can they be substantiated as
direct deductions from theory ? Further, when the
collisional damping cannot be neglected, what will be
the condition of reflection ? This is the problem which
Bose sets about to solve. His procedure is as follows:

By squaring equation (2), we have
“ !
S Hr—(ASXE)*=(AS)? E2—(AS . E)%.

2 Hee—
c2
H2 A% (AS.E)2e
B & E2.§2
where 6 is the angle between AS and E. In general, 9 is
a definite quantity.

Bose has assumed that reflection takes place whcn H=0
or when E becomes parallel to AS. These conditions
reduce to ¢=0 and g= o0 respectively.

Hence =¢?(1—cos?6), .. (23)

From (23) we have
H=0,
and E=0,

36

when ¢=0,
when ¢=o0

The propagation loses its wave character either when
H=0, or E=0. We can therefore suppose that the wave
will be reflected either when ¢=0, or g=o00. The former
gives us the conditions of Appleton (equation 21), and
the latter gives us Rai’s condition.

Bose has further tried to obtain more general conditions
of reflection when damping cannot be neglected. (Equa-
tions on p. 132, 133 again on p. 139 and 140.). His condition
for the o-wave is

ds N
= _% +ivpi 4 .o (24)

He concludes that from this the train totally reflected
has the form

Bxp |~ tkivpI=AT |

and puts pE=p%—v2[4.

This takes the place of p2=p2 for the o-wave.
Similarly he obtains results for the x-wave on p. 133,
and 135, which take the place of

—bn*

—pi*

« These results obtained by Bose are equivalent to putting

the complex values of ¢ for the o and x-waves given by

formula (20) equal to zero and infinity. This is shown in

Appendix (1), and the work is due to Mr. R. N. Rai.
But it is difficult to agree with this procedure because

when ¢ is complex, the conditions of reflection are no longer

given by either ¢=0, or g=oc0.

s—piipp,  pr=p LDy

For in general, when ¢ is complex we can put g=p-; %

and it has been shown, that we have for the quasi-trans-
verse as well as quasilongitudinal regions

-t {va—iix .
(25)
=t {vermox ),

where X and Y are functions of electron-concentration, and
collisional damping. For the o-wave in the equatorial
region, we have

r 78
Xl Y=13s
: . s k2
The forms (25) show that u? and ) can never be

negative. This is at once clear if one looks at the curves

drawn for various values-of v, and r by M. Taylor (1938)

and Goubau (1935). For the o-wave it is found that for

a fixed value of v, p gradually decreases with r, and

ultimately takes a small value> o, and varying very slowly.

For the x-wave, the first part of the curve is similar, but
i

‘
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then p rises abruptly, reaches a steelp maximum .at the
point corresponding to p=o0 and then drops out very
much as in the g-curve for the o-wave.

But it should be emphasised _that these curves give no
idea of the actual variation of u? with z, because ptis a
function of N (the number of electrons), and v, the collision
damping, both of which vary continuously with height.
For finding out the actual variation of 1?2 with height,
we can adopt two procedures—we can take a number of
curves of the type drawn by Goubau or M. Taylor for
varying values of », plot them on cardboards, and then
cut the cardboards along the curves. These may then be
arranged in a three-dimensional array, behind each
other, so that X-axis corresponds to N, the Y-axis to »,
and the Z-axis to u2. We have then to take a section through
the three dimensional profile of the pu2-surface, correspond-
ing to the actual conditions in the atmosphere.

The other procedure would be to plot p2-values taking
some theoretical values for v and N, the electron concentra-
tion. N can be calculated from Chapman’s formula for
a simple region which has been shown by Saha and Rai
(1938) to hold for the general case when radiation need
not be monochromatic and v can be calculated from the
kinetic gas theory, by taking T =constant, or T varying
according to some assumed law.

In general, y?=1in the non-deviating region, and varia-
tions will occur only in the deviating region. The curve
will be usually smooth, but may show sudden fluctuations
when we pass through irregular banks of ions or electrons,,
such as may likely be produced by minor causes. When
we come to the simple region, p? will vary continuously
from unity to a small value, depending on b. These calcula-
tions are being carried out by the junior author.

2)2
These arguments tell us that both u2 and (%) the real

and imaginary parts of g, are essentially positive, and
they can be zero, only in the ideal case when 8, the collision
frequency is zero. Hence it is not possible to put ¢=0,
and deduce any condition from it. In the same way, we
cannot put g=co, when ¢ is complex.
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APPENDIX-1I

Equation (20) can be written as

2
C’ go2 =t(w?+ B) —’_‘2"_ sin% [1 -

wsinla

Cp
1+4-t cos2a ]’” )

‘o g tea R ., \/ 4t2cosa .
C'gi=t (w?+pBt) 5 smal:l—l— l+m seo (3)
where t=(r—pB). Now g,2=0, when t=o0, or r—pfB=o,

or pP*—ivp—p2=9p, or p=%:{:\/m,

Therefore the critical frequency is given by

be=Vp2—v4. .. ()

gx=0 when t*=u?, or t=-4w, or PP—ivp—p2 L+ pp, =o.
. .

Putting p'—p— 452, we bave a2 2 4 4

=(a+1b)2,

}] 1 (i)

where
a= [ 3 {%“%"‘P%%-J (_%f_%%_i_pg) 2+ ;;24{;)?

The critical frequency is given by

pc=a:F17h/2° .- (I))
g3 and g} are equal to infinity when C’'=0
or B(B?— w?) —r(B2— w? cos?a) =0.

After simplification and rearrangement, we have

ip(ip+v) -+ p8L(ip+v)®+-p} cosa] -0,

[(#+v)2+ pi]
which reduces to
2 —ph .
3=ﬁ2p2 _{)pz fo'_sga“ ’ .o (Ul)

when v=0,

H

Here we see that the conditions (iv), (v), (vi) are the
same as those obtained by Bose.



