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theory of the effect of radiation-pressure on the expulsion
of the molecules. But the general considerations show
that radiation-pressure may exert an effect on the atoms and mole-
cules which are out of all proportion to their actual sizes. It also
shows that the radiation-pressure exerts a sort of sifting action on
the molecules, driving the active ones radially outward along the
direction of the beam. The cumulative effect of the pulses may be
sufficiently great to endow the atoms with a large velocity—the
velocity with which the tops of solar prominences are observed to
shoot up.

The velocity of the red prominences are sometimes
found to be as high as 6 X107 cm per second.

The solar prominences have sometimes been explained
on the assumption that they are due to the convection of
hot masses of vapor from the solar photosphere, which,
after reaching the atmosphere, are supposed to expand
adiabatically and develop the large velocities with which
the prominences are observed to shoot up. But both Pring-
sheim and Nicholson!® have pointed out several insuperable
difficulties in the way of the acceptance of this hypothesis,
including the deduction that the maximum velocity
obtainable from adiabatic expansion is less than g of the
velocity with which the prominences are observed to shoot
forward (6x107 cm). Nicholson has suggested that some
unknown forces of electrical origin may be the cause of
these large velocities, but even granting that the electrical
fields exist in the sun it is difficult to see how this can act
upon the luminous hydrogen particles, which are most
probably uncharged. According to the hypothesis put
forward in this paper, the effect of radiation-pressure on the
separate particles is altogether disproportionate to the
dimensions of the particles and may cause them to be

10 Monthly Notices, 14, 425, 1914.

endowed with a “levity”’!! long sought for in the explana-
tion of the prominences, the corona, and other solar
phenomena, including the extension of the solar atmos-
phere.1? The hypothesis presents the problem of the radia-
tive equilibrium of the solar atmosphere in a new light.
These ideas may be applied to the explanation of the
tails of comets. The tails of comets are undoubtedly caused
by some sort of repulsive action exerted by solar light, but
since, on the older theory, the effect wasfound evanescent
on particles of the molecular size, the tail was supposed
to consist of some sort of cosmic dust. But the spectroscopic
examination of the light from the tails shows that they
consist, at least partly, of luminous gases (CO, CO;)™.
Now the explapation is quite easy, if the considerations
advanced in this paper hold. As the comet approaches the
sun, more and more pulses of light from the sun traverse
the nucleus and the coma. Light-pulses of suitable frequ=ncy
are picked up by the gaseous particles, which thus gradually
gain in velocity in a direction away from the sun. The
cumulative effect of the absorbed pulses may endow the
particle with a velocity sufficient for its escape from the
main mass of the cometary matter and form into the tail.
. It is hoped to develop these ideas further in a future
communication.

UntversttY COLLEGE OF SCIENCE, CALGUTTA.
MaRrcH 4, 1919.

11 Ch. Fabry, lecture delivered before the Astronomical Society of
France, 1918 (L’Astronomie, 32, 14, 1918).

18Attention may be called to a comprehensive paper by D. Brunt
(Monthly Notices, 13, 568, 1913), who has shown that neither of the three
theories of the equilibrium of the solar atmosphere (isothermal, adiabatic,
or radiative) can account for an atmosphere extending to the observed
height of the solar atmosphere. The results of the spectroheliographic
observations are distinctly unfavorable to Julius’ theory of anomalous
dispersion (see Astrophysical Fournal, Papers by Hale, St. John, and
others).

13 BZ)hr, loc cit.

9. ON THE FUNDAMENTAL LAW OF ELECTRICAL ACTION!?
(Phil. Mag., Sr. VI, 37, 347, 1919)

L.

In the present paper an attempt has been made to
determine the law of attraction between two moving
electrons, with the aid of the New Electrodynamics as
modified by the Principle of Relativity. The problem is a
rather old one, and seems to have first occurred in 1835
to Gauss?, from whom the title of the paper has been
borrowed. Before explaining my methods, I shall give a
short history of the problem.

1 Communicated by Prof. D. N. Mallik.
2 Much of the Introduction is taken from Maxwells’ ‘Electricity and
Magnetism’, Chaps. IT and XXIII, see especially pp. 483 et seq.

About the year 1826 Ampere published his celebrated
Jlaws of electrodynamic action, which enable us to calculate,
with strict mathematical exactness, the action between
two closed electric currents. If we assume that a current
of electricity consists of streams of positive and negative
charges moving in opposite directions, this action between
two closed currents is seen to be composed of the elementary
actions between the moving charges, taken two and two.
The moving charges, therefore, cannot attract or repel in
the same manner as two stationary charges (viz. force
=ee'[r?), for in that case the total action would be zero.
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The natural assumption is that the law of attraction in this
case is quite different, and it depends not only upon mutual
distance between the two electrons, but also upon their
velocities. This is the problem which Gauss set himself
to answer; he does not of course speak of electrons, but of
charged particles, which mathematically amounts to the
same thing.

Gauss and his followers adopted a deductive method
for solving this problem. Ampére had given the law which
should subsist between two elements of current, i.e. the
currents flowing through an element of length of a circuit
in order to account for the action between two closed
currents. This law was derived partly from the Geometry
of lines, partly from experiments, and besides, involved
a number of assumptions. The solution was therefore not
quite convincing, and, indeed, as Grassmann® and Stefan?
subsequently proved, was not a unique one. Three other
expressions were found to be as good as Ampere’s expres-
sion for the action between two elements of current, Still,
Ampere’s solution seemed to be most likely, because the
assumptions were simpler in this than in other cases.

Starting with Ampére’s expression for the action between
two elements of current, and introducing the further
assumption that the current consists of discrete charged
particles in motion, Gauss deduced the following expression
for the mutual attraction between two charges:

ee’ 1 3 (du\ 2
=% (15 (-2(&))].
where ¢, ¢’ are the charges, r=mutual distance, u=relative
velocity. ,
But the law was found to be inconsistent with the prin-
ciple of conservation of energy, and naturally fell through.
Other physicists in turn took up the problem. The most
celebrated formula is that of WeberS, according to whom

the mutual potential of two moving charges is given by
the expression

=7 (-2 @) T

~ This formula is consistent with the principle of conserva-
tion of energy, but was nevertheless found by Helmholtz8
to lead to improbable results.

These laws were all based on the idea of action at a
distance. But in 1845, Gauss? again returned to the problem
(which he now calls the real keystone of electrodynamics),
with the idea that the action, instead of being propagated
instantaneously, may be propagated with a finite velocity
in a manner similar to that of light. But he did not succeed,

as he himself tells us, in forming any consistent mental
picture of the manner in which the action is propagated,
and seems to have given up the attempt.

Three other mathematicians, Riemann, Neumann and
Betti® followed in the wake of Gauss, and suggested solu-
tions, but these also have been no more successful than
their predecessors. According to Riemann?®, the force
~omponents between two charges are given by the Lagran-
gian derivatives of the function

ee’ (u—u’)z—{-(v—~v’)2—l—(w—w')2
=% [1- : ]

¢

where (u, v, w) are the velocities of the one particle, (v, v’,
w') are the velocities of the other.

According to all of these theories, the action depends on
the relative velocity of the two particles. This can be at once
perceived by a reference to the formulae of Gauss, Weber
and Riemann. If both particles move with the same velocity,
the action would be the same as that between two stationary
ones, and there would not be any electrodynamical action.
'This is a very objectionable feature of these theories, and
attention to this fact was first drawn, I believe, by Clausius.1?
Clausius is also the author of a series of elaborate investiga-
tions on this point. According to his theory, the components
of the force between two electrified particles are the
Lagrangian derivatives of the function '

ee’ uu' cos 8
ot [ ],

u and u’ being the velocities of the two particles, 6 being the
angle between ‘their directions of motion. The force com-
ponents are given by the expressions

3¢ 8¢
S I S Y e A
ox dt x oy dt a
0
% d T‘ﬁ
_——— 2 Z .
9z dt o

It will be observed that the action depends not upon the
relative velocity, but upon the absolute velocities of the
two particles. Clausius indeed proceeds to show that his
formula, besides leading to Ampere’s laws of Electrodynamic
action, is remarkably free from the objections which were
raised against the other formulae.

Clausius’s formula may be said, in a way, to have been
confirmed by the investigations of J. J. Thomson.”! Thom-
son investigated, from Maxwell’s theory of moving tubes
of force, the action between two spheres of radii  and «,

3 Loc. cit. p. 174,

¢ Populare Schriften-Boltzmann, pp. 95 & 96.
¢ Maxwell, loc. cit. pp. 484 & 485.

$ Phil. Mag., December 1872.

7 Maxwell, Ioc. cit. p. 490.

8 Maxwell, loc. cit. p. 490,

* Clausius, Phil. Mag., 1880.

10 Journal fir Mathematic (Crelle’s Journal), Vols. Ixxxii & Iexxiii
Phil. Mag., 1880.

1L Phil. Mag., 1881, ‘Application of Dynamics to Problems of Physics
and Chemistry’, Chap IV.
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moving with the velocities # and u’ and carrying the
charges ¢ and ¢’. The kinetic energy was found to be
2 12
v ) o ()
e’ cos 0 uu'
+5 5z

Neglecting the terms due to the Mass-motion, the Lagran-
gian Function T-U, for the two charged particles, is easily
seen to be equivalent to
n fuu cos 8 1
3 ( R ) TkR"
The similarity of this form with the Clausius form is

apparent. There is of course discrepancy in the (gi) term,

These formulae are all limited to the case where the
velocities of the moving charges are small compared with
the velocity of light.

From what has been said before, it will be seen that the
‘problem is still an open one. The investigations hitherto
given are largely empirical, and not based on sufficient
theoretical basis. In view of the recent extraordinary
development of electronic physics, it cannot be said that
the importance of the problem has been in any way dimi-
nished. On the contrary, a knowledge of the laws of electro-
nic attraction and a clear formulation of the dynamics
of the electron are necessary before we can satisfactorily
handle any problem on electronic physics,—such as the
atomic model, or radiation from atoms and electrons.

2.

In the present investigation I have throughout used the
New Electrodynamics (i.e., as modified by Lorentz, Eins-
tein, and Minkowski according to the Principle of Rela-
tivity). I have particularly used the method of four-dimen-
sional analysis which was first initiated by Minkowski.!2
A large amount of work in this line has been done by
Born'® and Sommerfeld,’* though not always with the
same specific purpose which I have in this paper. Sommer-
feld in particular, in connexion with his development of
four-dimensional analysis, has investigated the law of
attraction between two moving electrons; but the result
obtained is so cumbrous as to make further progress almost
impossible. This is due to the fact that for the scalar and
vector potential of the field produced by a moving electron,
they arrived at an expression which is only a partial state-
ment of the complete result (see remarks at the end of § 8).
When this complete result is introduced, the electric and
magnetic forces as well as the ponderomotive force acting
on an eclectron come out in very elegant forms, enabling
us ultimately to write out the equations of motion of two
electrons round each other in a Lagrangian form. When

13 H. Minkowski, Mathematische Annalen, vol. Ixviii. p. 472 et seg.

12 Born, Ann. d. Phystk, vol. xxviii, p. 571

1 Sommerfeld, Ann. d. Physik, vol. xxxiii.
PP 749 et seq.

4

pp. 649 et seq; vol. xxxii

one electron is at rest, the equations lead to Darwin’s
results (Phil. Mag., 1915).

3. Notation

The notation used in this paper is identical with that
used by Minkowski and Sommerfeld in the memoirs just
mentioned, and is to be found in any one of general treatises
on Relativity (Cunningham or Silberstein). However, for
the convenience of the reader, it is explained below.

The unit of time used in this paper is cl times the ordinary

unit (¢, velocity of light measured in ordinary C. GS. units),
so that with this notation, the velocity of light becomes
unity.

We shall, in most cases, use l=4/"1 tsothat (x, 3, 2, 1)
denotes the space-time coordinates of world-point (Welt-
punkt). The quantities

(u]_, Uy, Us, '\/ 1),

where (45, 1y, ug) are the ordxnary space components of the
velocity of a material point, will denote the space-time
components of the Velocity-four-vector. It should be

(wy, gy w3, w,)= '\/1

noticed that (uy, u,, u3)=§—t (x, 9, ), and if by + we denote

the proper-time (Eigenzeit) of motion of the material point,
we shall have dr=dt4/ (1 —u?), and

- (B2 2 0).

(“’1: Wy, Wg, w4)—

a will denote a four-vector of which the space components

are equivalent to the vector-potentials used in Electrodyna-

mics, the time-component =4/ ] ¢, where ¢ is the ordinary

scalar-potential. This is known as the Potential-four-vector.
The operator

.0, .0 9 ,,0
(g hastig) s
which plays the same role in the four-dimensional analysis
as the familiar operator V in three-dimensions

(V = la +Jj 6’+k§£> s
was called by Minkowski “Lor”, in honour of H. A. Lorentz,
the discoverer of the Principle of Relativity.

It is denoted by [7J.
The operator
02
+éﬁ> s -

02 02 02
(tgtem
which corresponds to the three-dimensional operator
2 2 2
is generally denoted by [J2.
The set of fourquantities p(ul, uy, ug, 1), where p=density
of electricity at a point, is a four-vector according to

Lorentz and Einstein. It is known as the Stream-four-vector
and will be denoted by .
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4.
The potential-four-vector a satisfies the equationst®
O%a=—4=S, or [J2a=0, s (D

according as the world-point at which [3%a is taken is
occupied by a stream-four-vector or is empty.
a satisfies also the equation’
Div a, or ([Ja)=0 ...(2)
at all points of the world-space.
Now the fundamental solution of equations (1), due to
a single stream-four-vector S, occupying the world-point
(*', ¥, 2,0)is
A8 N 3
e o re—arre-nt @

where (%, », z, l) is the world-point at which a is to be
estimated.

4 can be proved to be equivalent to 1 .
m

"Therefore the potential-four-vector at a world-point
(%, 9, 2, I) due to a distribution in the world-space of the
stream-four-vector S is

Sdx'dy'dz'dl’

1 '
= et ©
N.B. In modern methods of treating problems of Electro-
dynamics, the usual practice is to choose a unit of current
which is 4/47 times smaller than the ordinary unit, thereby
instead of having [J%a= —4nS, we have [J2a=—S. I have
struck to the older method, because this is more convenient
for our purpose.

The fundamental solution 71? seems to have been first

2

obtained by Poincaré.’® It corresponds to the solution %'in

three-dimensional problems on Potential, and is a parti-
cular case of the following general result first obtained by
Poincare. '

If (x5, x5, ... x,) be the coordinates of a point in space
_of n—dimensions, the fundamental solution of the genera-
lized Laplacian

0% 02 02
(‘87—12+ax 2+ ..... a;z) V=0,

(xl_xl )2+(x2_x2 )2+ ( n_xnl)z
@

5. Potential-four-vector at an external point due to the motion
of a point-charge.

By a point-charge is meant a charge having no extension
in ordinary space. In four-dimensions, however, it has
extension in one direction, viz, in the direction of the time-
axis if the electron be stationary, or along an axis making

.4
is ——5—, where r?=
™

18 Born, Ann. d. Physik, vol xxviii. p. 571.
1¢ Sommerfeld, Ann. D. Physik, vol. xxxiii. p. 663.
Y Thiorie du Potential Newtonien.
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an angle of (tan~'u) with the time-axis, if  be its velocity
of motion.

Let (x, », 2, [) be the coordinates of the point-charge,
which we suppose to have started from the origin at
time ¢=0. Then we have (x,, 2)= — /1 (uy, ty, u3).
Let (a, b, ¢, A) be the coordinates of the external point at
which the potential a is sought: According to the general
theorem in the previous section, the potential-four-vector
a is given by the integral

5°° po(w)dl
) (x—a)+(—b)*+ (z—)2+(I-A)2 °
where Po (w) =p (ul’ Uy, ua), —1

and therefore p,=p+/(1—u?), the rest-den51ty, which is an
invariant according to Lorentz and Einstein,
dl'=an element of length along the axis of motion;
dl’ is easily seen to be equivalent to dl4/(1—u?).
(x—a)*+(y—0)*+(2—0)*+(I—2)?
=% (1—u®) 424l (u,a-tusbt-usc+iX) +a2+b2-4-c2-+A2
={"24-2il' (w8} wb+wse+w ) +a%4-b2+-c2 A2
Putting I'=I4/(1—u?),
this integral is easily seen to be equivalent to
Po(w) (5)
[ F B2 F A - (@wy oy T-cog T Aaog) FF a
With the aid of four-dimensional geometry, we can give
an interesting interpretation to this expression. The direc-
tion of motion of the charge (p) is given by the line
x Y z l

W Wy w3 W,

Now

N
P (al b, ¢, A)
O(x.y, 2,1
Let P be the point (a, b, ¢, A). Then we have
PN?2=0P2—0ON?

=(a?+b%+c*+-A%) 4 (aw, + bw, +cwy +Aw,)?,
for ON=projection of OP on 04=i(w,a+wyb-+ wsc+w).

Thus the denominator in the expression (5) is seen to be
equivalent to R, where R is the perpendicular distance
from the external point on the axis of motion.

The result can also be easily proved if we introduce a
Lorentz-transformation, by which the axis of motion
becomes the new-time-axis. Then in the expression (4),
the four-vector p,(w) becomes

p. (0,0, 0, \/j),
and the problem is reduced to one at rest. The denominator

becomes equivalent to R?--{’2 where R is the perpendicular
from P on the axis of motion.
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We have therefore
+ o
, ij Po(B)dl’ _ p,(0,0,0, 7)

a = R2+l'2— R N

ko
- O

Now (0, 0,0, a,) are the components, in the transformed
system, of potential-four-vector a’ whose components in the
original system are (a,, a,, a,, a,). Re-transforming to the
original system, we have

Po(wl’ Wy, Wg, “’4) (6)
R cees

Otherwise—When by means of an orthogonal Lorentz-
transformation, we transform from the system (x, y, z, {)
to the system (x', y', 2, I'), the generalised Laplacian []%a
is transformed to '

[a.l! A, a3, a4]=

92 02 092 92 ,
(ax—lz_{-é;fz—{“é—?z'i"'é”ﬁ) a:—"O, or "—47TS .

In the present case, the distribution on an infinite line is
along the !’ axis. Therefore a must be independent of I’
from which '
SI
VA

V/x'3Ly'3 72 is easily seen to be equivalerft to what we
havg called R previously.

Thus according to this method of investigation also, the
potential-four-vector

_Po (wl’ Wy, Wg, “’4):
a= R N

where R=perpendicular distance from the external point
(a, b, ¢, A) on the axis of motion of the point-charge:—
direction cosines /] (w;, w;, wj, wy).

6. The Ponderomotive Force's,
If a be the potential-four-vector in an electric field,
and p be the electric space-density at a point, the force
acting on this point is given by the matrix

P owy,  uy  u,, i

0 0 3 0

l w 3y b @l

| a,, a,, ag, ay |

It should be noticed that the word “Force” is used in a
generalised sense. The components of this four-vector are
(X, 7, ) the ordinary space-components, and

L=1(Xu,+ Yuy+ Zus,),

i.e.,, 4/_7 times the rate of doing work. The four com-
ponents are connected by the equation

Xoy+Ywy+ws+Lw,=0,
i.e., the force-four-vector is always normal to the velocity-

four-vector. o
Writing (¢, F, G, H) for (v/—1 a,, a,, a,, a;) and

introducing the ordinary C.G.S. units, it can be easily
verified that this expression is identical with Lorentz’s
expression for Ponderomotive force.

We shall now write (w;, w,, w;, w,) instead of (uy, uy
43, v/ =1). Then :
[X, 7, R, L]=p, W Wy wy  w,

0 9 0 )
o« o oz @l
| & a; a; a,
Po=p+/(1 —4?) is an invariant, and is generally known as
the rest-density,

’ ’
Po @
and (ay, 2y, ag,a,) =5

R’=perpendicular distance from the external point
(%, , 2, I) on the axis of motion of the charge p’ which
produces the field.

The coordinates here refer to the coordinates of the
point-charges.1?

7. Law of Attraction between two Point-charges.
We havé now
¢ oa,

oa oa
X=p, [{wla—xl—l—wz ox +wy2

da,
37+“’4%?}
i) 0 i) 0
- {%5; + wz@j‘“’ag{*‘%ﬁ } 31] s
1Le.,

’ ’ ’ ’ n 9 1
X=p,p, l:(wlwl T waw,’ +wgws' - w,m,’) 9% (R—')

9 ) ) 9\ [w
= (oigatony tosgs o) (%) ]
for in the expression for a, R is the only term explicitly

involving the coordinates (x, », 2, I), (p,’, ') being
independent of them.

Now let dr=proper time (Eigenzeit) of motion of A.
Then dr=dt\/(T—y?),

d
and (wl’ Wg, Wg, w4)=2;‘(x: Y5 R, l)-
We have therefore

d_3 di d dy, 3 3z, 9 dl

&b By B e e TR
) 0 d ()
=wla—x+wz @—}—ws “dz-i:au 57

If we now put

Wy + waws' +waws +ww,’ ,
¢= 11 2 aR,_s 3 44 PoPo’s (8)

then, since

0P

(pops’ @ IR) =y -

18 Minkowski, loc. cit. § 11,

©® The matrix used for expressing the Ponderomotive Force (X, 7,
&, L) has not been used in the conventional sense (Sommerfeld, Ann.
der Physik; Vol. xxxii & xxxiii) as can be easily observed: -
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we have

00 d (0D *
=% & (‘az) :

Similarly for the other components (%, £, L).

The form is Lagrangian, and. the expression for (X, ¥,
Z, L) comes out in the form originally pointed out by

Clausius.

-

We therefore prove that ‘the force-four-vector on (A)
can be put into the Lagrangian forms

00 d (3D )
A= @ (551)
L4 (2
B_y dT awz ...... (9)
r
4 (52)
T 0z dr \Duw,
1204 (29)
Tol dr (Bw4

Similarly, if R=perpendicular distance of the point
B (a, b, ¢, A) from the axis of motion of (A) (x,, z, ),
ie.,

R=(x—a)*+(y—b)*+(2—0)*+ (I—A)*
H[(x—a)wy+ (y—b)wy+ (2—0)ws+ (I—A) 4],
and @’ denotes the expression
%,;_?“ (wywy| +wyw,’ +wawy' -+ w4w4") >

the forces exerted by A on B are given by the equations

, 00’ d (0D’ , o0’ d (3D’
X=57—F(sz:;') T=ab“a7(m) (10
D40 9 (0
=% df'(awa' =@ Gy

8. Two Electrons in Motion.

In the foregoing sections we treated the case of two
point-charges. We shall now take the case of two electrons
when these are in a state of motion. It will be shown that
the same equations would hold if instead of the rest densities
Pos Po’s We substitute the invariant charges (¢, ¢') and
suppose the whole charge to be concentrated at the centre
of each.

The electron occupies the space
(2 —2%0) 2+ (9—20)*+ (2 —20)* 1%
where (x, », z) are the space-components of any point
within the electron, (x,, 39, 2) the corresponding quantities
for the centre, and r is the radius.
In three-dimensions this equation represents a sphere,

but in four-dimensions this represents a spherical cylinder

having infinite extension along the time-axis. The equation
shows that the electron is at rest,
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We shall now write down the equation of a spherical
electron moving with a uniform velocity (uy, u,, ug).

In three-dimensions, the equation of a circular cylinder
having the line

XX _J o _2— 2

l m n
as the axis is given by the equation
(x—20) 24 (y—20)*+ (2—20)* = [{(x—20) +m(y—30) +
n(z—zp)]%=r%.
Similarly, in four-dimensions, since the axis of motion is
given by
X% IV E%0_ l.—lo
twy 1wy twg twy
therefore the equation of the cylinder having this as axis is
(x—20) 2+ (9—00) 2+ (2—20) 2+ (I— o) 2+ [0y (x—2%,)
+wy(y—p0) +ws(2—20) +wy(I—1)]2=12
That this is so can easily be observed by introducing a
Lorentz-transformation in which the line of motion is the
new time-axis, and the velocity is equivalent to the moment

of transformation. Then if (£, 9, {, v) be the new coor-
dinates, we have

(€ —£0)*+ (n—m0) 2+ (§—Lo) *+ (v —0)*
= (x—%0)*+(—20)*+(2—20)*+ (I—o)*

b

and
i[wy (x—2%) +wa( ¥ —20) + w3y (2—20) + w4 (I—lg) | =v—,.
.. the equation of the electron becomes
(6—£0)+(n—mn0)*+ (E—Lo)?=r"
We shall now calculate the potential-four-vector due to

the motion of electron at an external point (g, b, ¢, A).
We have

_1 po(w)dxdydzdl -
T 55,8.5 [(x—a)2 4+ (y—b)2+(z—c)2+({—N)?%) (10a)

the integration being extended over the whole world-
space enclosed by the electron.

We shall now introduce again the above-mentioned
Lorentz-transformation. Then we can write
dédndidv for dx dy dz dl,
po(0, 0,0, %)
and (§—£)*+(n—7')*+ (=) +(—v)*
for (x—a)24(y—b)2+(z—c)2+(I—N)2
Now a’ the transformed of a becomes
_ 1 j’ 5’ S S p0(0,0,0,t) dédndldv
m (=€) (n—n) 2+ (=0 + (v —)?°
integrated over the world-space
(§—£0)*+(n—mo)*+ (L)' =% (A).
We shall first integrate over the new time-axis. The
limits are then from — oo to 4 co.

. /o2 £0(0,0,0,t) dfdndl
7 N 555 V(E=E)+(—n)+ (=0

for py(wy,wy,ws, w,),
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over the spherical volume (A). This is a three-dimensional

potential problem, and is easily seen to be
_ €(0,0,0,%)
V&P (=) (G0

where e=({f podédndL,

integrated over the spherical volume (A).

Now v/ (&,—€)2+(mo—7")*+(L—1)*
is the perpendicular distance from the external point

(¢, v, U v') on the axis of motion; we can denote this
by R.

Then

" (0,0,0,1)e

—F
Now a’ is what the potential-four-vector a with the com-
ponents (a,, a,, a3, a,) becomes when the transformation is
introduced. Retransforming to the original coordinates,
we have

Wy, W w,)e
[ah a,, a,, ad:hﬂ_ﬁ”_&_l}_

... (11
We can now express R in terms of the original system of
coordinates.

RA=(xg—0)*+ (90— 0)*+ (20—¢)*+ (l—2)*+
[(*o—a) w1+ (o—b)wa+ (20 —6)ws+ (lg—A)we]?,
where (%5, Yo, 20 lp) are the coordinates of the centre of
the electron, (a, b, ¢, A) those of the external point.
N.B. TheScalar and Vector potentials due to the motion

of an electron were first obtained by Lienard and Wiechert®
about 1898. They were expressed in the form

. ¢ (‘i"_ ﬁ)
¢=CT)’ [F,G,H=_\¢ ¢ ¢/ .. ..(2
A= r(1-"c)

where r is the distance of the external point from the point
occupied by the electron at a time (t—u'/c)’ etc. (uy, ty, U,)

are the velocity components at the time (¢—r/c), u, is the
component of this velocity along the line of r.

The expression (11) is in fact equivalent to the expression
(12), as the following reasoning will show. Suppose the
time-coordinates are so chosen that

(*0—a)*+ (Jo— )2+ (29—¢)*+ (ly—A)*=0,

ie. ¢(ty—t")=—r,
r
or t———to“l“‘c—-

We are in fact estimating the effect at the external point
rfc seconds after the electron had been in the position

(%05 Y0s 20)-

Then, since
RO = (=) (3= )+ (=) (= N+ [(r— )y
+(p—b)wy+(z2—c)wy+(I—A)wg],
we can, denoting by R’ the four-vector with the components
{(x—a), (y—1b), (z—0), (I=N)},
write R?*=R"?*4-(R'w)?,
where (R'w) denotes the scalar product of the four-vectors
R and w.
With the above assumption, we have R'=0,
" |R| =] (Rw) =u1(x~—a) +uy(p—b) tug(7—c) —r
o v (T—u?) ’

. We can write
ew r .
[as, a,, a;, a,] W) ri—w) (1, s, 45, i].

Using the ordinary time-coordinate, we have

=

¢ ' F. G H= e(ty, Ug, Ug)fc

TE R =
¢ c

This result has been obtained in various ways by

Herglotz?!, Sommerfeld??, and other workers. Sommerfeld

effects the integration of equation (10 a), with the aid of
Cauchy’s law of residues, and confirms the result (previously

....(12)

obtained by Herglotz),
ew _ ,
a=m ceas (11 )

But a comparison of the methods of arriving at the two
formulae will show that the expression (11’) is but a partial
statement of the result, it being assumed from the very
beginning that the time-coordinates are separated by the
interval rfc, where r=three-dimensional distance between
the points. The result a=%3 is perfectly general, and in
full agreement with the requirements and the spirit of the
principle of relativity. This reduces to the expression (11°),
when for the purpose of forming an idea of the result in
three-dimensions, we make the particular assumption just
mentioned about the time-coordinates. Hence it is apparent
that when we apply the result to the determination of the
magnetic and electric forces, and the ponderomotive force,
we must use the expression (11), and not (11°).

9. The Ponderomotive Force on an Electron due to the field
produced by the motion of another electron.

In § 6 we investigated the action of a point-charge on
another charge; in the present section we shall investigate
the action of an electron (B) [coordinates of centre (a, b,
¢, A), velocity components (v, 5, v;)] upon another
electron A [charge ¢, coordinates of centre (x, », 2, 1),
velocities (uy,-u, u’,,)].

30 [’Felairage Electrique, vol xvi, {1898; Wiechert, Ann. d. Physik,
vol. iv,

31 Herglotz, Gott. Nach. Heft 6. (1940).
32 Sommerfeld, Ann. d. Physik, vol. xxxiii. p. 666.
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The components of the ponderomotive force upon a
point (¥, y', 2/, I') of the electron A are ngen by the ‘four
components of the matrix

Po

Wy Wy w3 | wy
) i) o 0
ox’ 9y’ 0z ol |’
a’ a’y a’y a’,
w
where a’= Vo4 —,

R2=(x—a)*+(y—b)*+(2—0c)24(I—))?
Flox—a)+ 0y (y—b) + wy' (z—¢) + 0 ((—N)]2,
.
V=

The total force is obtained by integrating each of these
four expressions over the whole volume of the electron A.
The X-component of force:

¢’
(er) )

-[%,-4,
=X dr

and [wlls ‘”’2’ ws,; w4,] [V1a vy, V3, i]-

where d"’=\/(lTu2) . dt,
and _ex_ox
T or or’

for all points of the electron move with the same velocity,

’
e
and ¢’=IT [wy0)" F wyw, 4 wywy + wgw,'].

" The total force

X‘jﬂ 8x T dr sil)]m’

d2 being the contents of the normal section of the cylinder
(% —20)"+ (3 —20) 2+ (2—29) 2+ (I—Iy)?

¥ —x0) w1+ (' o)1+ (2 — 20) w0+ (' —lo)wy]2=1*. (13)
It can be easily proved that

i (R) =£; (%)

k%

for the points x, and x are rigidly connected. Accordingly

X‘m o2 (55) )] @

fpop'dQ2=.
_0_d (¢ )
Then X_,a—xo i (6(»1 .

To evaluate @ we need only find out the value of the
integral

{2

Introducing the Lorentz-transformation, in which the
axis of motion of the cylinder (13) becomes the new time-
axis, we have now

5 j dédndt

over the volume (¢{— fo)2+(’?_’?o)2+(§‘—zo)22’25

K
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and R’ is expressed in terms of the new-coordinate system.
Let (¢, 9", U, v') be the new coordinates of B.
Then
R2= (=€) +(n—7')24- (L~ )2+ (v~ ) [ (6—€) w0,”
FO=n) "+ () 0"+ (v —v") 0,12,
where (w,", w,", w,", w,") are the direction cosines of
the axis of B in the new system. R’ is therefore of the form
R2=A8+Bn*+C+2HE y' +2Gn U +-2Fy'{’ +2U¢ +
2Vn'+2W{' +D.
Let (R) be the same function of (¢, ,, £,) i.e. R is now
the perpendicular distance of the centre of A from the
axis of B.
Then it can be proved that approximately

L @) , ]
=g [1-C5d e 00T
Neglecting terms of higher order than the first, we have
=2
=5

(In view of the fact that the radius of the electron is
extremely small, the second term must be infinitesimal of a

‘higher order compared with the first).

Therefore as a first approximation,

!
ee
¢=»§ (w0 + wywy + w0y + wyw,).

00 d (00
X=a‘ir(a71)

aq5.d<a¢>
Y= (=

9 dr\Qw, . (14)
P 39) [’

¥z E(Bwa
L34 (22)

ol h(’&?d ]

dropping the subscripts 0, (x, 3, z, /) now denoting the
coordinates of the centre.

10. Laws of Electrodynamical Action.

We shall now reduce the Lagrangian function to three-
dimensions. We have

e’ (04" — Wy, + wywy + wyw,')
TG =0 (o) (=N [r—a) oy T

Putting (x—a)2+4-(y—b)2+(2—c)2+(I—1)2=0
Just as we did in the interpretation of the potential-four-
vector, we have

€' (w0, F-uyvy+ups—1)

o

r(1—v,) v/ (1T=u2) -+ (19)
with the same interpretation for r and v, as before.
Excepting for the factor [(1—v,)4/(1—4%)] in the

denominator, the form for P is identical with that assumed
by Clausius for explaining the laws of electrodynamic
action. The occurrence of these terms need not cause us any
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confusion; following in the wake of Clausius, we can
easily prove that this formula leads to the laws of elec-
trodynamical action just as well as any one of the formulae
mentioned in the introduction. We have to take terms up
to the second order, and instead of using r, we shall have to
introduce the instantaneous distance r’ which differs from
r (1—v,) by terms of second order only. The second order
terms arising out of r (1—z,) and 4/(1—?) affect only
one electron; while the term (u;v,+u,v,-+uy0;) affects both
of them. Remembering that current consists of equal
quantities of positive and negative charges moving in
opposite directions, there will be no difficulty in realizing
that in the final process of summation, terms affecting only
one electron would cancel out, and only terms involving
both of the electrons would remain in the final result. For
further particulars, I would refer the reader to the above-
mentioned memoir of Clausius’s where the whole thing is
worked out in a most elaborate and convincing manner.

11.

While the main object which I had in view when the
work was undertaken has been achieved, viz., the deduction
of the laws of electrodynamical action between two closed
currents from the theory of electrons, I wish to point out
certain other consequences to which this investigation may
lead. With the help of Minkowski’s four-dimensional
analysis, I have succeeded in recasting the important
result of Lienard and Wiechert (on the field produced
by a moving electron) in an entirely novel form, and as I
believe the only form consistent with the principle of
relativity. The potential-four-vector has been proved to be
equivalent to (¢w/R), where e=total charge, w=velocity-
four-vector of the electron, and R is the four-dimensional
perpendicular distance of the external point from the axis
of motion of the electron. By applying the theorem in this
simple form to Lorentz’s equations for the ponderomotive
force acting on an electron, it has been found possible to
deduce a Lagrangian function controlling the motion of
two electrons round each other. It has been shown that
for small velocities, the result is practically identical with
that tentatively assumed by Clausius in 1880 for explaining
the laws of electrodynamical action on the atomistic
hypothesis. There is one important distinction to which
attention should be drawn.

In the usual form of Lagrangian equations of motion,
we express the force X in the form

_ 04
X= o_d dx .
ox dr di

But here we have

i.e. in place of time ¢, we have to use the proper-time 7,
where dr=,/ (T—u?) dt.

The name proper-time for the function =, suggests that
it has some special relation with the time-coordinate,
whereas in fact it is perfectly symmetrical, and similarly
related to each of the four coordinates. To dispel any such
false notion, it is now usual to designate dr as an element
of length of the world-line of motion. Thus

dr=ds=+/di* _dx*_dyt—dz?,
and (wy, @y, wy w,) becomes /7 times the direction
cosines of the element 4S.

In a system consisting of two electrons only, the forces
controlling the motion are due to electronic attraction only;
the gravitational field, being 10-42 times smaller than the
electronic field, can be entirely neglected. Following
Minkowski,? the equations of motion can be written in the
forms:

omPx 204NN _ow a4 (N
°ds2 ox &\ b ™ EE %a 4 o
AT g
T = % " & 82{_— ds® 9b ds ds’

& ’ L’
, dz_vp_df i _og d a:’;
CMIn T %z & a-Zf- &t o &y e
o (G| e i (%

Mo geE = ds\ 85— ds? oA ds
ds ] ds )
..(16)

These equations are a particular case of the general equa-
tions of motion of an electron
myc® d% )

w, fra+ w3 fi3+ “’4f14

e dr?
myc® d’

e = fn + @ fost @y fou

d
moo z =w,f, at w&f a2

€
m06 dl
e drt

L .ay)
+ o fa

=w; fyu+ oy feet+ ‘U3f43

P

These equations can be deduced from the Principle of
Least Action in the following manner. The ordinary form
of the Principle of Least Action is

S{(T—V) dt=0 - ...(18)
Instead of dt we write dr=14/dt*—dx?—dy*—dz?, and for
T we write myc?, where mo=rest-mass of the electron.
We have then
SV=Xox+ 18y 8z+Lél,
where (X, 7, , L) are the components of the Pondermotive

2 Minkowski, loc. cit. Appendix.



32. S — ——— n-

Force-four-vector, (8x, 8y, 8z, 8l) are the variational
displacements. s

Instead of the ordinary form, we have now
8fmyc?dr—[8V dr=0
Now dr=— (wdx+ w,dy+ wydz+ w,dl),
and 8Vdr=—[X8x+ Y8y} X8z Ldl] ds
= — el Fra(Sxdy— ) - fon (89— dyS2) - f oy (B2ds — dz%)
+/14(8xdl—dxdl) +-f34(8ydl—dydl) +f 5, (8 2zdl—dz81)].

Now we shall prove an auxiliary theorem?; the (“X, ¥, Z,
L”) used in this proof have no connexion with the force-
components.

We have
8§ Xdx+ Ydy+Rdz+Ldl
=X [86Xdx+ [ X8dx.

0X,  0X  ,0X_ 0X

=S 5 (a—xSx+a—y-8y+§8z+ﬁ8!) dxt

08x, 0dx,  Odx 0dx

+§S [ (Gt 5 o5t ) a].

After partial integration, the second term equals

Tuidal 3X, 08X, 0X, 0X
-S S (adx+6d):+5zdz+~a—ldl) 5x.

final

Hence &8f{Xdx+Ydy+2dz--Ldl

- initial 9Y 9 X)
fiinal +S (W—E};

(8xdy—dx8y)+5 other similar terms.

...(18)

2Xox

=X8x+ Y-} Z8z+ L8l

Now for (X, ¥, £, L) substitute moc* (w,;, w;, ws, w,) and
and let us denote
TN
( 0x, 0% by Qne-
Then we have
8fmoc®ds=8[myc*( w,dx~+ wydy+ wydz+ w,dl

6%, 8%+ w8y 4 wgd -t w,Sl) ;m

nal
[T Qua(rdy—dx8) -+ Dyo(Sydz—dy52) + gy (S2ds —dz8)
+0214(8xdl—dx3l) 244 (Sydl—dySl) + 244 (8 2dl—d281)].
Putting the first term=0 as usual, we have from equation
(18" ,
§[(mgc22y5+-¢f1,) (8xdy—dx8y) +5 other similar terms]=0.

The six-components of the six-vector (85X ds) are not
independent, hence we cannot put their coefficients
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individually =0, If this were possible we would have ob-
tained the system of equations

e 4
since (dx, dy, dz, dl) represent the actual displacement,
(8%, 3y, 8z, 8l) the variational displacements.

We shall have to collect the coefficients of (8%, 8y, 8z, 8l)
separately and put them individually equal to zero. In
this way we obtain the four equations

_"'LCZ= J1awy+ frsws+ fraw, _ Jan w1+ fos s+ foa
¢ Qpwat+ 21305 +02y 0, Qz1w1+923w3+924w.

_Juoitfuwstfuo, _ fuor+ fiswst fiaws

g0y +25505+Qgg 0y Ly 01+ 24305+ Qg0
(17)

Of these, only three are independent.
It is easy to see that

42
Moe?[ g8+ 098215+ w42y, ] =mc? E;’

) 9
for  wy,+ w3913+ W= w, (ai:—-g—l)

Owg; O, Bw4_8w1>
T (’ax —’ax—) +“’4(ax )

=é£_€ [“’12 X w22+w82+ w42:|

- (wli%c-i- wz%‘i‘ “’a:_z'l‘ w,;%) @y
_ Gy 2
for w?+ w4 ws+ w,2=—1, .. the first term=0.
The system of equations (17°) are thus practically identical
with the equations (17) but for practical purposes this
form may be more convenient than the Minkowskian
form,

The six-vector £ may be styled as the ‘“acceleration”
six-vector, (§2y, £244, £2;,) being connected with the three
components of rotation, and (2, 2,, 2;) with the
three components of acceleration

dx d®y d*z
(F’ dr®’ d ) '

In conclusion, I wish to express my thanks to Prof. D. N.
Mallik, and my friend Mr. Satyendra Nath Basu for their
kind help and encouragement.?

#Vide Cunninghum, Principle of Relativity, Chap VIII.

(13,892

% The paper was communicated about two years ago, but owing to
irregularities of the mail service caused by the war, the publication has
been rather delayed. Meanwhile much work has been published on the
subject, especially several important papers by Crehore in the ‘Physical
Review'. The author takes this opportunity of expressing his regret
that he has not been able to compare his results with those obtaineﬁy
Crehore and other workers.



