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As a first approximation, when b is small compared to v,

we obtain p= '-N? (Boyle-Charles-Avogadro Law), and as

a second approximation we obtain

_ N
=373 (van der Waals correction).
We also note that
— NKo- ¥ B
HV=NKo =T where x= Ko 4)

To account for the influence of internal forces, we
multiply, following the lead of Dieterici, the above ex-

pression (3) by e ¥Xev, a having the same significance

as before.
From this equation of state, we can easily verify the
following results for the critical point:

Critical volume, V,— ;"’_‘—1 b=—3.166b,

NK,
.Pc Vc

The corresponding values of V, from the van der Waals
and the Dieterici equations are (36, 2b) respectively, and of

K= =3.513,

e2
2
As a matter of fact, for the simpler gases, the value of ‘X’
obtained in this paper agrees better with the experimental

K ate (§=2.66 =3.695> respoctively.

C . o2
results than the Dieterici value 55 we have for oxygen?

K=3.346, for nitrogen® K=3.53, for argon! K=3.424,
for xenon® K'=3.605. We need not consider the van der
Waals value §, for it fails entirely.

*Mathias and K. Onnes, Proc. Amst., Feb. 1911.

3Berthelot, Bull. de la Soc. France de Phys., 167 (1901). .
4Mathias, Onnes, and Crommelin, Proc. Amst., 1913, p. 960, vol. xv.
SPaterson, Cripps, Whytlaw-Gray, Proc. Roy. Sec. Lond. A. lxxxvi,
p. 579 (1912).

The most serious drawback to Dieterici’s equation is,
according to Prof. Lewis (vide Lewis’s Physical Chemistry,
vol. ii. p. 117) that it makes & or the limiting volume

Ve
=5
polation of Cailletet-Mathias mean density line to the

while the limiting volume, obtained by the extra-

temperature §=0°K is about % The value of & obtained

Ve

in this paper, viz., 316

therefore agrees better with this

value.

It is yet premature to predict what influence this investi-
gation will have on the speculations concerning the variabi-
lity of the volume of molecules with temperatute. A more
detailed investigation dwelling upon this point, and the
application of the formula (4) to Amagat’s (pv, p) curves,
will be communicated shortly. Meanwhile we point out

a
that the factor ¢ "Mk&v has been introduced into the

expression for ‘¢’ only as a provisional measure, though
it is considered that this step, though not quite exact,
Jis one in the right direction. In the next paper an attempt
will be made to introduce energy into probability calcula-
tions.

Sir T. N. Palit Laboratory of Science, Calcutta.

Note added in proof.—On consulting the literature on the
subject, we noticed that in several papers in the Amsterdam
Proceedings (vide vol. xv. p. 240 et seq.), Dr. Keesom of
Leyden had also made attempts to deduce the equation of
state from Boltzmann’s entropy principle. But, in the
expression (2) for W, he introduces, before differentiation,
an approximation in which terms up to second order in b/v
are retained only. In this way, he arrives at the van der
Waals’ form s—b for the influence of finite molecula:
volumes. In obtaining our present equation of states (4),
no such approximation has been made.

7. ON THE MECHANICAL AND ELECTRODYNAMICAL PROPERTIES
OF THE ELECTRON

(Phys. Rev., 13, 34, 1919)

The object of the present paper is to extend Minkowski’s
method! of four-dimensional analysis to the investigation
of the mechanical and electrodynamical problems connected

1Minkowski’s method of four-dimensional analysis is expounded in
two papers: (1) Raum und Zeit, published in the Phys. Zeits.,, and
(2) Die Grundgleichungen fiir die Electro-magnetischen Vorginge
n bewegten Kdrpern-Godtt. Nach, 1908. These two papers have been

_translated by me, and are being published by the Calcutta University,

with the electron. As-'is well known, Minkowski’s
four dimensional analysis is based on the principle of
relativity, and .we have thereby to abandon two time-
honored concepts of physics, i.e., absolute independence of
time and space, and the constancy of mass. The correctness
of these two principles is no longer a matter of hypothesis,
but is founded on experiments. It is therefore to be hoped
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that the reswts of these investigations will be helpful to us
for the elucidation of the mechanical and electrical pro-
blems connected with the electron, though sometimes
difficulty may be encountered in putting proper inter-
pretation on these results. -

The notation is the same as that adopted by Minkowski
and for the convenience of the reader, it is explained at
the very outset.

1.
(x, 3, 2, {4-ict) denotes the space and time coordinates of
any point in the four-dimensional world

1 Uy Uy U
(wh Wy, W3, w&)_ 2[ L z, 3, t]
\/1 u ¢ ¢

denctes the velocity four~vector of the point
We put ds?= —(dx*+dy*+dz%+-dl?)

tl.erefore we have

(w1, wy, wy, wy) = (ﬁ 9 dz ﬂ)
3 b ) ds 3 d‘ b dx b dy b
and '\/'_1 (wh Wa, W3, wA)
denote the direction cosines of the four-dimensional tangent
to the path of the particle. c=velocity of light in space.

We put (f23s f31’ flz) =(Hm Hw Hz),
the components of the magnetic field, and

(fm f24’ f34) = —i [Ea:s Ew E:]:

the components of the electric field. Minkowski has shown
that f constitutes a six-vector.

(ap as, as, a4)=[F9 G, H, l‘ﬁ],
are the components of the potential four-vector; (F, G, H)

are the vector potentials, ¢ is the scalar potential.
p=¢electrical space-density;

u Uy Us .
P ['Es R i | =p, (w1, wy, ws, wy)

2

are the components of the stream four-vectors;

po—p\/l-——

is known as the 1est-density of elecmmty
The vector operator

.0 .0 ? , 9
0= (18—:E+Jajr+ka_z+§l)’
is known as the lor and the scalar operator
62
2 __
U= (ax2+ + atan)

is known as the generalised D’Alembertian.

The equations of electrodynamics can be written in the
forms

lor f=s,
f=Curl a;

lor f*=o0
O%= —J

Ca=o.

2. The Scalar and Vecior Potentials of a Moving Electron.

Lienard,? and almost simultaneously Wiechert® showed
that the scalar and vector potentials are given by the
expressions

¢=_ ¢ , (F,G, H)= _ ¢ (upupty) (1)

If P be the point at which the potentials are calculated
at the time ¢t and M be the position of the electron at the
time ¢, where MP=c(t—1,), the distance MP is denoted by
r and [u] denotes the velocity in the position M, and (ur)
its component in the direction of r.

The formulae are deduced from the theory of retarded
potential and do not involve the principle of relativity.

Several investigators* have shown that the formulae can
also be deduced from the theory of relativity and can be
thrown into the compact form

¢[w]
= [ Rw]’ (2)
R being the four-vector joining the two points, [R.w]
denoting the scalar product of R and w.

It is quite clear that the forms (1) and (2) are quite
equivalent.

In a paper published elsewhere, it has been shown that
from Minkowski’s four-dimensional analysis we obtain

_ ol
L

(3)

In this formula, (x, », 2z, [) denote the time-space
coordinates of the electron (4), (w;, ws, w3, w,) its velocity
components, (x’, »’, z’, I’} denote the space-time co-
ordinates of the point B at which the potentials are esti-
mated.

P denotes the four-dimensional perpendicular distance
of B from the axis of motion of (4); since the direction-
cosines of this axis are —i (v;, w,, w;, w,), we have

pr= G+ (=9 (2= 2 ) (=) (=)o

: () et (2—2)ws+ (=) w,]?
=R?4[Rw]?.
Now if we make the assumption that the time coordinates

are so chosen that

R =(x =)+ (=) (2= &)+ (I=1)2=0

ie., c2(t—t")i=r?
ie, ¢ (@—t)=r, )
the formula (3) becomes the same as (2) and therefore (1).
Also the assumption which we make here about the interval
between the time coordinates is identical with the premises
of Lienard and Wiechert.

I am not quite certain whether this assumption (4)

2Lienard, L’eclairage electrique, 16 (1898), pp. 5, 53 and 106.

. ‘Wlechert, Arch. Neérl., (2), 5 (1900).

32‘So%mcrfeld Uber die Relativitats-theorie, Ann. d. Physik, Vols.
&
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which is made here is at all essential. I am inclined to

think that it is not essential, but necessary only for the

interpretation of the result to those three-dimensional
beings whose senses are not sharpened enough to enable
them to grasp a result expressed in four-dimensional
figures.

3. The Electric and Magnetic Fields due to a Moving
Electron.

If a denote the potential four-vector, the components of
the six-vector f giving the electric and magnetic fields are
given by

9 9 9 9
f=Curl a= Wfﬁ?é—z'ﬁT .
4 ay a3 ay
Thus  fg= o222 € ) i a] ete. (5)
12 ox' ayl ps 3 ™2 2 31 .
) oP
where “1—Pa‘, s 2_PW .etc.

we can easily verify that if we put ¢(¢t—¢') =r, we have

2
H,= :;% ["72 (z—2)— ";” (y~y')]*,

A= (1—@>,
A

= B [uxl. (6)

where
L ]

The electric forces are given by

. Oa Oa
.f;d.“—" —1E4,= 5?? - ﬁ'l’

= 1% [ ((—l)—e, (x—2")],

e[ u ,
=—tr~——£a [r—zl —_ (x—-x )] 3 (7)
and generally

2 r B2 ru
E,= :43% [(x—x')— —%1] s E= r%@ l_r— = ] .
These values are widely different and simpler than the
values obtained from the older theories, for example,
compare the values given by Crehore®.

The discrepancy is due to the fact that in these older
theories, we always assume that the equation

(=) +(r—)+(2—2") 2+ (1—1)?=0,

is an essential condition. But in performing differentiations
with regard to (x’, »’, 2, I') we here assume that they are
quite independent of (¥, y, 2, ). I am not quite definite
as to which of these two standpoints is correct but I am
inclined to think that my standpoint is more in accordance
with Minkowski’s ideas of time and space. However it is
preferable to keep an open mind on this point.

‘SPhys. Rev., July, 1917, p. 448.
3

4. Maxwell’s Stresses, Poynting-Vector, Etc.

Minkowski has shown that if we multiply f by its own
matrix, we obtain a matrix

Sp—L* Sia Sis Sia
F— | Sn Sw—L? Sy Say
Sa1 Sas S33—L2 Sas
S41 S4z S43 SM —L?
where Sy, =} [ f55 +f s +Hfae?—f12? —fis =4,
S12= [fmf a2 T/1a fae]

L=‘H,ﬁa32 +f 322+ﬂ22+ﬂ42 +f242+f Yl -

and the matrix

L]Se Sw Se| |X. X, %,
P Sa1 Saa S| = | 1o T, T,
Sa S, Sp Re R R

denote the Maxwellian stresses, i (S14s Saas Sas) denote
the components of the Poynting-vector, and Sy is the
energy function. We have generally °

1

Xp= §; [_ng-i-f a42+ﬂ22_ﬂ22—ﬁ32_ﬂ42],
1

X,= p [fisSaatfia fasls ete.

Now on the standpoint taken up by me, it is quite easy
to calculate these qualities. It can be shown that

(8

& 2
Yo= g [P (1420044, X,=z 5 [—w0,P?
+oy%,]. 9)
The Poynting-Vector
2
(X, 1, Z)= Foy =) [(—wlw,,Pz+-(1-L4),(—w2w4P2+-(2-c‘),

(—wyw, PP+ 45,)]
and the energy function

2
Su=L= g7 [—P* (14207 +7]

oP °oP
where oc1=Pfa7, «y=P R etc.
and -(.2=¢(.12+o(22—|—a(32—|—-(,42= P2,

5. The Law of Attraction between Two Moving Electrons.
We can now proceed to find out the attraction which
one moving electron exerts upon another moving electron.
According to Lorentz’s theorem the components of the
force acting on an electron (4) moving in any electromag-
netic field are ‘

X=e¢ [wzﬁz+w3ﬂ3+w4.fi4]:
¥=c¢ [w; fo1+ws fo3+ 10, fol,s
75:% [w1f31+w2f32+w3f34]’ (10)

and we can also add the fourth or the time component

] 2
L= Xt Tuk L), fm /1=
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which is proportional to the rate at which work is done by
the moving charge,--we have

L= e[w; fo+w; faotws fus]-
In this case, the field is due to the second electron (charge ¢’,
position x'y’z’l’, velocity components w,’ w,” w,’ w,").
According to the last section, the potential four-vector
e'[w’
=5
We have now, since f= Curl a,

X=ce' [wz {ga,; (L%') - a%(z%) } +w3{%’(w_3/’) ,
-5 () e (3) a (3 1]

=ce' [E (w1w1'+w2w2'+waws’ +w4w4I\
ox P’ ;

d d ? 2\ [w\ 1.
— (g gy sy ) () )
Now putting ®=e¢e’ (w,w,’+waw,’ +wsw,’ +waw,’) [P,

we find that X= 22 _ ¢ (2)

where P'2=R?-}-[Rw’]2

ox ds dx

ds
where% denotes differentiation in which x is explicitly

involved, similarly with

o _ 0
dw,  dx
ds

d 0 0 0 0
3= (g +iougy Fun g o)

as is easily seen. We have similarly
20 _d 30N 00 d/ 00
o ds 3 @y 09z ds 5 dz p
ds ds

L _d 30
ol ds( dl ) (11)

o—

ds
We can say that ¢ is the kinetic-potential of the electron (4)

in the field of the electron (B). Similarly if ¢’ denote the
Kinetic-potential of the electron (B) in the field of (4),

¢ =ee’ (wyw," +wyw,y’ +wyws’ +ww,’) [P,
P:=R%+4 (Rw)?
and we have similarly

, 09’ d y 0D’
X'= o —d7< ;dz—’), (12)

dsl

Let us now interpret the results in three dimensions. We
have

_ee'B? , uv cos 0 ee’ B'? ur\ ,
X—W(x—x> (1—- 02 )_1‘2)\3ﬁ° (1——6—)u1,

where f= \/1—_—;’-:— g= \/1——’%; A= (1—-061).(13)

In three dimensions, the forces are equivalent to a force
of repulsion
eel Blz 1
3% B
in the direction of the line joining the two points, and a
force -/

e’ B2

erz,\EBc (1_ [%r_) u’, (14)
in the direction of the velocity of the second or the attracting
point.

We thus perceive that the force which comes out in a
very simple form in four dimensions takes a very com-
plicated form in three dimensions.

The kinetic potential

ee’ (1— '-"’—'ﬁ)

SR CLOF

This kinetic potential is practically coincident with the
kinetic potential assumed by Clausius in order to find out
the law of attraction between two moving charges of
electricity; Clausius has shown that this kinetic potential
leads to the celebrated electrodynamic laws of Amp-re.
A short resumé of the work done in this connection is
given below for the purpose of comparison. The problem
was first enunciated by Gauss in the year 1835, and was
called by him the fundamental keystone of electrodynamics.®
(1) Gauss (1835): The forces are the derivatives with regard
to (x, y, z2) of the potential function,

ee’ 3 d&
=5 (15 )
(2) Weber (1843) takes the potential function
ee’ 1 dr?
=7 (1-a@):

Both of these forms have been long discredited. Later
writers have pointed out that the force cannot be simply the
derivations with regard to (x, y, z) of some potential
function, but are the Lagrangian derivatives of a certain
kinetic-potential. We give the form of this kinetic-potential

according to different investigators.
(1) Clausius (1881):

¢=eﬁ (l_uu cos 6 > ,

r c?

uv cost
r’

c2

(15)

where u and 4’ are the velocities of the two electrons, and 6
is the angle between their lines of motion. In two papers
communicated to the Crele’s journal’, Clausius deduces
Ampere’s law of electrodynamical action between two
currents from this law.

For the literature on the subject, see Maxwell, Electricity and
Magnetism, Vol 2, chap. XXIII, and J. J. Thomson, Application of
Dynamics to Problems of Physics and Chemistry, pp. 35.

7Vols. 82 and 83.
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(2) J.J. Thomson:

86
r

Crehore® has calculated the forces components according

to J. J. Thomson’s theory®. He finds that the forces are
equivalent to

ee’ . o e
F1=7§, a repulsion along the line joining the centres.
’

ee , . .
F,= s’ cos 6, an attraction along the same line.

’

ee . o .
F3=-r— ', a force in the direction opposite to the accelera-

tion of the second charge.

,,d (] . o .
Fy=ce' u n (;) s a force in a direction opposite to the
velocity of the second charge.

(3) Sommerfeld' has also calculated the ponderomotive
forces, assuming that the value of the potential four-vector
_e[e]
~ (Roy
and using the condition
(s =) (=) (2= 2) (1= 1)i=0
in gourse of differentiation. Their forms are a bit too
complicated.

6. Egquations of Motion of the Electron.

Minkowski!! deduces the equations of motions of ponder-
able particle by means of a variational process in which
the function

N 2
fmoc®ds, where ds?= —(dx®+dy*+ dz2+dI%) =c2dt? (l —1:—2)

is used instead of the three-dimensional {74d:.
He obtains
d2x A2y d?z a2l
mec vy =X, m,,cz—a,s—2 =Y, mooz—zs—- =XZ, myt—— 7 =L. (16)

Now we have

X=e [w; fra+ws fra+10, fial;
according to Lorentz’s theorcm We have also
d*x
= (wl o —}-w2 % +wg— 37 —!—w4al> wy
Ow, aw2>

= Wy 7~ 6 (3 (w12+w22—]-w32+w42) 1+w, [ ( 3 o

ow, Bwa) 0w, 6w4)]
TWs (az o +w4(az B

. ow ow
= — (w5 + w3 Q13 +1,Qy,), putting Q= —* —~ 2.
6xh axk

= (1 5 uu' cos 0) (n=magnetic permeability=1). .

It will be seen that forces F;, F,, F, are, but for some minor details,
represented in our formula. Force Fy does not occur at all.

%Phil Mag., 1913.

Ann, d. Phys., Vols. 32 and 33, Uber die Relativitiits theories;

Minkowski, loe cit., Anhaup, Mechanics.

Hence we have the four equations, putting p=cm,/e,

Wy (fratpfys) +w, (frsF1ys) +10, (fra+pf2yy) =0
wy (fu+us2sr)  +ws (faa+pfy5) (foatpf29) =0
wy (far+pls) s (foo+pQy,)  +uw, (faatpf234) =0
wy (fart182y) +w, (faatpQl) +ws (fia+pQly) =0

Of these, only three are independent; the fourth can be
deduced from the first three.
We have now identically

fm‘*’Fle f13'*‘l‘913 f14+.“914 0.
Jostus2es foatusdey | T
Saatpf2s

Sot+pf2y
Jatps2y fsz"H"Qaz
f41+l‘941 f;z+l‘94z f4s+P'-Q43

ie. (fratpRn) (faatpfsy) +(fostuss) (fratnfiy)
'l‘(fal‘f‘!”gal) (f24+$‘~924)=0- (17)

The condition is evidently satisfied if we put

—p= jl.li .f23 f31 fi4 .f2_4=.}13§_ (18)
‘QIZ ‘QZS 'Q ‘914 ‘924 ‘{234 "

If of these equations, any three are satisfied the remaining
three come out automatically from the equations of
motions. But we cannot possibly be sure of the authenticity

‘of these relations unless it can be deduced from an inde-

pendent source. For this purpose let us take the original
variational equations.

Let (X, 7, £, L) represent the components of the force
four-vector at any point, which is subjected to a virtual
displacement 8x, 8y, 3z, 8.

Then W=X0éx+ Y8+ Z3z+ L&,

i.e., if we call

04
W: ——0;, A =I st’
SA=[8Wds={(X8x+ Y3y+Zdz+Lsl) ds
—ef[ fra (dyBx—8yd2) Hfon(dzdy—S2dy)
Ffar(dxdz—dxd2) +f14 (dlSx— 8ldx) +foy (dISy— Sldy)
+-foa(dlSz— 8ldzZ)].

Now the function [myc?ds can also be subjected to a
variational process. Since

ds=w,dx+w,dy+wydz-tw,dl,

we find

8fmyc?ds= —myc2[[£21585,5 12538553123, 855;, 92,4854
92548854 +623,8534],

where )

88y p=dx;, dx,— 8x,dx;.
Thus from the variational equation
8fmoc?ds -+ [SW.ds=0;
i.e., from the principle of least action, keeping the initial
and final points fixed, we obtain the original equation

I[(flz'F'F"le) 885+ .. .]=0

The relations (18) thus seem to be borne out by inde-
pendent evidence.
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Difficulty is encountered here about the interpretation of
the terms (2,5, 2,5,...) in three dimerksions Q is evidently
a six-vector being the four-dimensional cus of the velocity
four-vector. The components [.Q%, 0, £2;,] are evidently
connected with rotations .

Sus Su, Suy _ Suy Suz du,
[Sy T8z’ 8z ox’ o _5]

and [Qy,, 2,4, 2;,] are connected with the accelerations

(& % %]
@y P de

but the exact interpretation in three dimensions has not
yet been obtained. We can style £ as the acceleration six-
vector.

On a future occasion, I hope to communicate the result
of my investigations on the orbits of the electron under
different conditions,

In conclusion, I wish to express my best thanks to my
friend, Mr. S. N. Basu, for much help, and useful criticism.

Universtry COLLEGE OF ScIENCE, CALGUTTA, INDIA.
May 11, 1918.

ON THE MECHANICAL AND ELECTRODYNAMICAL PROPERTIES]OF THE

ELECTRON:

ADDENDUM':1

(Phys. Rev., 18, 238, 1919.)

It appears that the relation

‘=f12 Jis _fa _Ju f24 fs4

T T T T, T 0, T 0y T 2y By Ry

which was given in my paper! “On the Mechanical and
Electrodynamical Properties of the Electron” and whxch
was obtained from the determinant

f12+l‘~912 fis‘f'l’-gls f14+.”-914 =0
Jut+pf2y, Jastpsas  faatpa
Sutuy fatpy, Saatps23
fatilu futnla futnl |

or
(frat19215) (foat120) + (fes+1220) (fra+1240)
+(f81+l“931) (f24+.“-924) =0,

cannot hold. For, from the principle of least action written
in Minkowski’s form,

8§myc2ds— [SW.ds=0,
we obtain the relation
IS [(fra+u82y5) (dx8y—Sxdy)]1+5 other similar terms=0.

1Physical Review, January, 1919,

But it is not possible to equate to zero the coefficients of
the six-components (dx8y—8xdy) of the area-six-vector
(dS%3s) as done in that paper, for though (8x, 8y, 8z, 8l)
represent an arbitrary displacement (dx, dy, dz, dl), is not so,
but represent the actual displacements. We have, therefore,
to collect the coefficients of (8%, 8y, 8z, &) and put them
scparately equal to zero. In this way we obtain

JS1aWs Hf1awsH ety fz1w1+fzawa +faats
e 'lewz +2,3w5 4+, 0, Q5w 4-Qy505+ 2 240y
f 11+ 5205 +f 3010, Ju1+ s+ Sy (4)
Q300+ 2351, + Qqw, .Q4lw1+.942w2 +R245,

which are simply another form of the Minkowskian equa-
tions

o 42
Mot? fyz _X myc? ‘y._T moc ﬁf—z, mee Z:ﬁ =L (A,)
dz
for T = — (0 + 0,1+ 0,2,)), ete.

The form (4) as it involves the acceleration six-vector
may for certain purposes prove more convenient than the
form (4').



