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30. THE SPECTRUM OF Si+ (ONCE IONISED SILICON)
(Nature, 116, 644, 1925)

Pror. A. FowLER has recently shown that the spectrum
of Si+ is similar in constitution to that of Al, that is, consists
of doublets having 2p,, 2p,, as the highest terms. A number
of lines, ascribed by Fowler to Si*, remain, however, well
outside his scheme of classification, and some of these
can be arranged in a group of quartets.

MuouvTipLeT 1

J 1 2 3
(0) (1)
1 17154-38 .. 116:0 .. 17038-38
62-19 62:25
(2) (0) (1)
2 17216-57 .. 11594 .. 17100-63 .. 199-89 .. 1690074
13456 . . 134-96
(1) (3)

17235-19 .. 199-49 .. 17035-70

29 : 5 observed
3 : 5 calculated

(Landé)

2:3 : 5 observed
3 : 5 calculated

(Landé)

Interval ratio 116-00 : 199-89

62-20 : 134-76

This is a pp’-combination.
The intensity rule is only roughly obeyed.

2

MuLTIPLET 2

J 1 2 3
(1) (0)
1 18382:63 .. 116:48 .. 1826615
339-49 339-11
(0) (1) (2)
2 18043-14 .. 116:10 .. 1792704 .. 199-86 .. 17727-18

This seems to be an intercombination between doublet
P and quartet p-terms. But none of the known doublet
P’s has 339 as frequency difference.

The differences occurring in these multiplets occur
in other pairs which have not yet been classified, e.g.

(0) (0)
18402-19 — 18286:73 = 11546
(0) (2) -
18415-41 — 18280-08 = 135-3
(1) (1n)

20573-45 — 20373-87 = 199-58

The group having the successive differences 199 and
116 correspond to p-terms of a quartet series. Evidently
a quartet series is possible for Sit, but it is only feebly
developed under the usual methods of excitation. Without
more data on the spectrum of Sit, it is not possible to find
out more information on the point.

Allahabad University.

31. ON THE ABSOLUTE VALUE OF ENTROPY*
Meghnad Saha & Ramanikanta Sur
(Phil. Mag., Sr. VII, 1, 279, 1926)

According to Boltzmann, the entropy of a thermo-
dynamical system is represented by the equation
S=k log, W

S=entropy, k=Boltzmann’s
bability of the state.

(1)

gas-constant, W=pro-

*Communicated by the Authors.

There are different ways of calculating the probability W
for different thermodynamical systems. In previous years,
W was used in a relative sense, in terms of some standard
state. By W was meant the mathematical probability,
hence it was always a fraction. Moreover, it remained
indeterminate to the extent of an additive constant.

To Planck we owe the conception of the “Thermo-
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dynamical probability”. This is proportional to the mathe-
matical probability, but not quite equal to it. The mathe-
matical probability is a fraction, while the thermodynamical
probability is a whole number. Planck has developed
methods for calculating the thermodynamical probability of
different systems—e.g., a perfect gas and black body
radiation. As is well known, this idea led, in the hands of
its author, to the development of the Quantum theory,
which is now responsible for progress along all lines in
physical science.

There are, however, a few points which are not yet clear.
Some of these refer to the fundamental assumptions of the
theory, others refer to the mode of application of the funda-
mental ideas. The exact nature of these obscure points can
only be made clear by reference to the actual working,
which we now proceed to do.

§ 1. Theory of Perfect Gases®

Let us take a large number N of molecules enclosed
within a volume V in the gas-kinetic sense. To calculate
the probability of the system, the volume is divided into a
number of cells denoted by 1, 2, 3, ... n, containing N;,
N,, N; ... N, molecules respectively. The thermodynamical
probabhility is defined as the total number of complexions
(i.e., the total number of ways in which this distribution can
be effected). It is easy to see that

N!

W"IN,!Nzl...N,,! SR
The mathematical probability
_ W oo
W,,,,,-——Z—‘N”—W,,.n . S (2.1)

The summation XW,, is taken over all positive values of
N;; N,, etc. consistent with the condition

N,+N,+...N,=N.
N

N.
1 2
5 =Wy —N =Wsy. ..

Let N

Then with the help of Stirling’s formula, it can be easily
shown that

..(3)

The actual or equilibrium value of log W, is obtained by
making it maximum subject to the prescribed conditions.
Let ¢,—average energy per molecule in the cell 7. Then
the total energy

E=N,e;+Npes+. . .Nye,
=NZw,e,=const. e (4)
Zw,=1. ... (5)

log W,= —N'z‘l:v,. log w,

and

1 The subject matter of this section is merely an abstract of §113-§134
of Planck’s “Warmestrahlung,’ 5th edition.
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From equations (3), (4), (5), we can deduce that in case
of equilibrium

w,=ap P& ..(6)
From the relation 6_S=l_ it can be shown that
oE T
1
f=rr ()
From equations (5) and (6)
1
=, ..(8)
e kT
and it can easily be shown that the free energy
F=kNT log a; 9)

a, however, remains indeterminate, and it cannot be calcu-
lated without the introduction of some further hypothesis.

By an application of Liouville’s law, Planck shows that
for a system obeying the canonical laws of Hamilton the
motion is completely defined if the positional (¢) and the
momenta (p) coordinates corresponding to each individual
degree of freedom of each particle are given. In this case he
_shows that the phase integral

H=...[[f...dgdpdgedp,. . .dg.dp, (10)

(the integral being taken for all the degrees of freedom for
a particle), remains unchanged by subsequent events. H is
known as the extension of the elementary region of the
phase space. According to classical theory, H may have any
infinitely small value up to zero, but according to the
quantum theory H has always got a finite, though small,
invariant value. o
The summation ¢ ¥T can now be effected.

€r

« 5 7T
5 #T 26 da180:dq,dp,. . - dq.dps
H ]

... (11)

For monatomic gases, H must refer to the representative
particle in the cell 7, having the coordinates »,, y,, z,, and
velocity components u,, v,, w,.

e=dm(u’ 40,2+ w,?) +¢, ...(12)

where ¢, denotes the unalterable internal energy of an atom
at rest, and

Taking

dp,dp.dp,=midu,dv,dw,.

We obtain
« V = s
ZeFT=gre ¥T. (2mkT)* ....(13)
& ’
With this value of X¢'#T, neglecting e,
o (Vi s |
S—kN {ﬁ(zka)’f} 1$kN ... (14)



108 COLLECTED SCIENTIFIC PAPERS OF MEGHNAD SAHA

According to the classical gas laws, * . .
8
S=kN log {VT?} 4, - ... (14°1)

where ¢ is independent of T and V, but depends upon N.
As far as the calculation of gas laws and specific heat is
concerned, the exact value of ¢ is immaterial; but if we
wish to study the chemical behaviour of the gas, the vapour
pressure, etc., the knowledge of ¢ is essential, as was first
pointed out by Nernst in connexion with his Heat Theorem.

Now to show how 7 depends upon N we take p identical
vessels, each of volume V, containing the same quantity of
the saine gas side by side. Then suppose the sides be made
to collapse suddenly and the p volumes are made to mix
with each other. No change has been made in the system.
The entropy can be calculated by adding the entropies of
the p vessels, each of volume V. Thus for the entropy of
the whole gas occupying the volume pV we have

S—kNp log (VT®)-pi(N), .. .(142)
and this must equal
8
kNp log (pv.T?)+i(pN),

which is the entropy of a gaseous mass of pN particles
occupying the volume 4V,

pi(N)=kNp log p+i(pN).
The above relation is satisfied if
i(N)=—kN log N.
Thus we can deduce from the classical theory that

Hence

2

8
S=kN log [% T’A] ..(143)
where A is independent of N, T, and V.
From Planck’s theory, we have
8
S—N log | (2rmkTe)? (144
¢ \m

Comparing the two expressions, we find that H must vary
as N. Planck puts H=N#3. But this is, however, not quite
clear from the expression for H, for

H={[dq,dp:dq.dpsdqsdp;. 15

=1, ...(15)

if we put, according to the canons of the quantum theory,
{fdq.dp=Fh (Planck’s constant).

Sackurand Tetrode?, who were the first to calculate the

value of i, proceeded in a different way. According to
Sackur the thermodynamic probability is not equal to our
W,,, but it is equal to

mop L
NT NIN;IL...N,1

The value of H, according to Sackur, is

§§ dg:1dprdgadp.dgsdps=he.

Tetrode’s procedure was identical.

Attention to this point has recently been called by
Ehrenfest and Trkal3, who have introduced a new method
of dealing with the thermodynamical problems, e.g. disso-
ciation equilibrium and vapour pressure, in which all these
difficulties are avoided. We shall return to this method
shortly. Planck has justified his assumption, viz., H=N#3,
by taking into account the permutability of the molecules,
but the reasoning is rather difficult to follow.

§2. Ehrenfest’s Method.

Ehrenfest has introduced a very general method for
dealing with the thermodynamical behaviour of different
and complex systems, like mixtures of gases reacting with
each other. We shall confine our attention to the case of
perfect gases.

Ehrenfest replaces the entropy function S by another
function {y} which is allied but not equal to W. {3} is
supposed to represent the total phase space described by the
system and is defined in the following way:—Let the system
consist of N particles. Then each particle describes a sub-
phase space {u}, where

fud=...[f. . .dg,dp\dg.dp,. . .dg,dp, ... (16)
The total {y}-space described by the system is then
given by

{y}=Pg{y}, ~.(17)

the product extending over all the particles. P represents
the permutability of the particles.
Now, in our case, i.e., for monatomic gases,

W=...0fS.. dxdydz, d(muvd(mv,).d(mw,), (17-1)
Mty =P1py MUp=P,, MW, =ps,.

Now Zp1rttpor+pa.2=2mE, ...(17-2)
where E=total kinetic energy and m is the mass of a particle.

3~

V*(2mmE) *
Hence i =~(3—mN)— ...(18)

r(z)
2

Putting now E=%\IkT,

log {y}=N log {V (2mmkeT)%} ...(19)

According to Sackur-Tetrode:

3 Sackur, Ann. d. Physik, x1; Tetrode, loc. cit. xxxix,

s Ehrenfest and Trkal, Proc. Amst. Akad. xxiii. (1920).
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Comparing the two expressions,

Wwe

T ... (20)

§3

Ehrenfest and Trkal have not traced any connexion
between {y} and W. But from equations (18), (19), and
(20), it is possible not only to connect W and {y} for any
general system, but also to lay down a general theorem for
the calculation of the probability of any system. This we
now proceed to do.

According to Planck, the probability W is a whole
number. But whenever in physics we wish to determine
the absolute value of any quantity, we must as well lay down
a “unit” for it. Now let us see what is meant by “Unit
Probability.”

The idea of “Unit Probability” is intimately connected
with the zero of entropy; for S=k log W, and when W=1,
S=0. According to the second law of thermodynamics,
this takes place when a condensed system is reduced to
absolute zero; for a reversible engine acting between this
system and another system at a finite temperature T will be
able to convert all the heat energy abstracted into mechani-
cal wbrk. .

We can suppose this to take place in another way.
Suppose we have a gas at a finite temperature. The particles
are moving in a chaotic way and at a distance from each
other. Suppose all of them suddenly begin to move with
identical velocity in the same direction, with the proviso,
however, that the total kinetic energy remains the same.
‘Then if this system, on coming into contact with another
body and suffering inelastic collision, transfers the whole of
its energy to that body, we can say that the heat motion has
been completely converted into mechanical work. Thus the
idea of absolute zero, and zero of entropy, presupposes a
system of particles absolutely devoid of all motion. But
this is not sufficient. If the particles which are devoid
of all motion remain at a distance from each other, then,
owing to mutual attraction and there being no motion, they
will begin to move towards each other, and kinetic energy
will again be developed and can again be converted into
mechanical work. For an attracting system, motion, and
with it the energy available from the system, will entirely
stop when the particles are packed together in the closest
manner possible.

We assume that such a system possesses unit probability.
Let the value of y-space for such a system be denoted
by {»}. ,

We may remark here that these considerations apply only
if we regard the atoms as the final constituents of matter.
This, however, is not the case, and therefore, even when the
state pictured above has been reached, the electrons of one
atom will react mechanically on the other atoms and

e
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electrons; and motion will never be entirely absent. Thus
we cannot conceive of an absolute zero of temperature unless
we picture to ourselves a state in which the protons and
electrons have combined in some unknown way and annihi-
lated all matter. We can therefore talk of absolute zero in
a world where there is no matter. But according to the
generalized theory of relativity, there can be neither space
time, nor any physical quantity in a world which is entirely
devoid of matter. Hence we come to a conclusion which has
been previously reached by Nernst, viz., in the pheno-
menal world it is impossible to reach the absolute zero
of temperature.

We shall now proceed to calculate the thermodyna-
mical probability of a system in the terms of {y}, as unity.
The probability of the state of a system is proportional to
the phase space {y} described by the system. Therefore the
thermodynamical probability at a finite temperature |

_M
w 7o
We have now to find out the value of {y},.
Let us suppose that in the system there are N particles,
each particle having f degrees of freedom. We shall follow
Ehrenfest’s considerations in calculating {y},. According
to the definition, for a single particle

fuy=...Jf. . .dg:dp\dq.dp,. . .dg.dp,

=ht,

...

...(16)

Let us suppose that each particle is a Planck-resonator
and confine our attention to one degree of freedom only.
According to the quantum theory its phase-point (¢,p) must
lie at p=0, ¢=0, or on one of the ellipses A, 24,....,the
area between two consecutive ellipses being given by

§§dqdp=h.*

Ehrenfest attaches a ‘““weight” k to each one of these
ellipses, and in particular also to the point (p=0, ¢=0).
Now, in our case, i.e., for a system at absolute zero, none
of the degrees of freedom of any particle is excited: or the
phase of every particle for each degree of freedom is
at (p=0, ¢=0).

Hence, for a single particle,

fW=...1f.. .dqdp.dqsdp,. . -dgsdp;
=h'

For the whole system

;{F}___hf“ ...(22)

Again the N particles ean be arranged amongst themselves
in N! ways. Combining this with (22), we obtain

Dlo=H"N! .- (29)

< Vide Ehrenfest and Trkal, Proc, Amst, Soc, xxiii. p. 179 (1920).
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To sum up, the thermodynamic probability in Planck’s
sense is given by i '

-

we 7

This will cover all cases.
On the basis of this law we shall now calculate the
entropy of a system consisting of diatomic molecules.

§ 4. Entropy of a Gas consisting of Diatomic Molecules.

In this case we shall ignore the rotation of molecules
about the axis of symmetry and also all internal motions of
atoms in the molecule. Therefore, each molecule has only
five degrees of freedom, three of these being translational

and two rotational.

{lo=H"N
=k N, ...(24)

where N denotes the total number of molecules considered.
Now, for a single molecule,

{m=J.. -dxdydzdbddp,dpdpdp.dpy

Thus

=V.dr.f...dp,. . .dps ...(25)
Therefore y-space for the total system is given by
_I1
=
=V*.(4m)".{.. .dpydp,,. . .dps,. .. ...(26)

the integrals being taken for all molecules, dpyy, dby,, ctc.
denote the momenta of the different molecules.

The total kinetic energy of the molecules being given, the
integration is to be taken over all possible values of the
momenta which are consistent with it. If E be the kinetic
energy given, we have :

P Pt b, b | De?
Zom T omt om0 T3 =E

...(27)

where m is the molecular mass and 4 and 5 represent the

moments of inertia. The molecules being all similar, these
quantities (m, a, and b) have the same values for all the
molecules. The total number of terms in the lefi-hand side
of equation (27) is 5N.

Hence

PA=V*.(4m)" . . .dpy,dp,,. . .dps,. ..

=V, () e YE o) 32,(24)1/2. (25) 12}

(%)

...(28)
since N is very large, we may put 5N for 5N—I.
{y}=VN.(4w)N.‘/§’1’\IE (m3/2. V2. by
(7
_ V()" VEET (o s BT gy
B ().
5-) !
Hence
__
e NI ...(29)
_ V.(4m)". A/ 27E™  (m¥2.a12. b12)¥ (29.1)

5N V— )

Using Stirling’s formula and putting E=3NkT, we obtain

72 5/2 ,n3/2 ,1/2 B1/2Y ¥
W={e/ .417V.(27rkNT.)h/5 .m%2. 4% b/ } . ..(299)
S=k log W

1/2 3/2 41/2 pl2 5/2
=Nklog{e/.%V.m/;.;ls.b/-(2’”’5T)/}”_.(30)

It may be emphasized here that the theorems E=38NiT
for monatomic gases and E=NAT for diatomic gases have
not been assumed here, but followed directly from the
theory. The calculations have not been reproduced here.

32. ON ENTROPY OF RADIATION II*

MEGHNAD SaHA & Ramant Kanta Sur

(Phil. Mag., Sr. VII, 1, 890, 1926)

In a previous paper, it has been shown that the thermo-
dynamical probability of a system is given by the law,

W={y}/{vho co (D)

Where {y}=phase-space described by the system at

temperature Ty, {y}, =phase-space described at absolute

*Communicated by the Authors,

zero. It was shown that the absolute value of entropy of
perfect gases could be deduced from this theorem.

The same formula can be applied for deducing the
entropy of radiation. Since the time when Bartoli deduced
the existence of radiation pressure from thermodynamical
reasoning, it has been customary to look upon radiation as



