

Lecture 4: some topics in extrapolation Lucio Gialanella Dipartimento di Matematica e Fisica Seconda Università di Napoli and INFN – Napoli Naples, Italy

Theory / formalism to extrapolate data (e.g. R matrix)
 Example: ¹²C(α,γ)¹⁶O in helium burning

known potential, Φ known

Matching $\Phi'(r)/\Phi(r)$ at the nuclear radius

 Cross sections include contributions from few levels
 Level parameters from experimental data unknown potential

 $\Phi = \Sigma_{\lambda} A_{\lambda} X_{\lambda}$

 $\gamma_{\lambda}, E_{\lambda}$

Experimental data:

- ¹²C(α,γ)¹⁶O
 ¹²C(α,α)¹²C
- ¹⁶N β -delayed α -decay

R-matrix fit to the $\boldsymbol{s}_{\text{E1}}$

Global fit Least square method: $\chi^2 = \chi^2_{\ \beta} + \chi^2_{\ \delta_1} + \chi^2_{\ \delta_2} + \chi^2_{\ \gamma}$

Extrapolation Uncertainty on extrapolation and fitted parameters

¹⁶N -> ¹⁶O -> ¹²C+ α data W_{α}(E)=F(E, a_{ℓ}, A_{$\lambda\ell$}, $\gamma^{2}_{\lambda\ell}$, E_{$\lambda\ell$}) ℓ =1,3; λ =1,2,3

¹²C(α,γ)¹⁶O $\sigma_{E1}(E)=H(E, a_{\ell}, \gamma^{2}_{\lambda\ell} \Gamma^{2}_{\lambda\ell} E_{\lambda\ell})$ $\ell=1; \lambda=1,2,3$

¹²C(α, α)¹²C $\delta_{\ell}(E) = G(E, a_{\ell}, \gamma^{2}_{\lambda \ell}, E_{\lambda \ell})$ $\ell = 1,3; \lambda = 1,2,3$

Rmatrix code by R.E. Azuma et al., PRC 50,2(1994)1194

Least square method – uncorrelated data

- ★ Measurement of Y in conjunction with X -> (x_i, y_i) i=1,...,n
- ★ cov $(y_{i'}y_{j}) = E[(y_{i'} < y_{i} >)(y_{j'} < y_{j} >)] = V_{ij} = \delta_{ij'} \cdot \sigma_{y_{i'}}^{2} < y_{i} > = E[y_{i'}]$
- * Model Y=f(X; A_1, \ldots, A_m)
- ★ $(\partial f / \partial x) \sigma_{x_i} << \sigma_{y_i}$
- ★ $Q = \sum_{i} [y_i f(x_i; a_1, ..., a_m)]^2 / \sigma_{y_i}^2$
- ★ Minimization
- ★ hopefully: Q-> χ^2 distribution with v=n-m degree of freedom
- * error matrix ε: cov(a_i, a_j)= $\varepsilon_{ij}, \varepsilon = \alpha^{-1}, \alpha_{kl} = 1/2 \partial^2 Q / \partial a_k \partial a_l$

Simple example: linear case

*	Y=AX+B
I.	Analytic solution (now)
II.	Numeric al solution (later)
III.	Graphic solution (also later)

Х	У	σ_y
0	0.92	0.5
1	4.15	1.0
2	9.78	0.75
3	14.46	1.25
4	17.26	1.0
5	21.9	1.5

Example: linear case – analytic solution

- ★ Q = $\Sigma_i [y_i ax_i b]^2 / \sigma_{y_i}^2$
- ★ $\partial Q / \partial a = -2\Sigma (y_i ax_i b)x_i / \sigma_{y_i}^2 = 0; \partial Q / \partial b = -2\Sigma (y_i ax_i b) / \sigma_{y_i}^2 = 0$
- ★ error matrix ε: cov(a_i, a_j)=ε_{ij}, ε=α⁻¹, α=

★ <u>a=4.227</u>; b=0.879

 $\partial^2 Q / \partial a^2 = \partial^2 Q / \partial a \partial b$ $\partial^2 Q / \partial b \partial a = \partial^2 Q / \partial b^2$

- ★ $\underline{\sigma_{a}^{2}} = \varepsilon_{11} = \underline{0.044}$; $\underline{\sigma_{b}^{2}} = \varepsilon_{22} = \underline{0.203}$; $\underline{cov(a,b)} = \varepsilon_{12} = \underline{-0.0629}$
- ★ $\underline{x^*} = \underline{6}; \underline{y^*} = y(x^*) = \underline{26.24}$
- ★ $\underline{\sigma_{v^*}^2} = (\partial y / \partial a)^2 \sigma_a^2 + (\partial y / \partial b)^2 \sigma_b^2 + 2 \operatorname{cov}(a,b) \partial y / \partial a \partial y / \partial b =$
- $= x^{*2} \sigma_a^2 + \sigma_b^2 + 2 x^* \operatorname{cov}(a,b) = \underline{1.0}$

Monte Carlo estimate of the uncertainty on the extrapolation

- ★ each y_i has a normal distribution $F(\langle y_i \rangle, \sigma_{y_i}^2)$
- using a (pseudo-)random number generator one can simulate a set of n possible results of repeated experiments
- ★ For each set one estimate parameters and calculate the extrapolated value (i.e. in our example a, b, and y*)
- ★ The analysis of the distributions obtained provides the best estimate of and the corresponding variances a, b, y*,

Gialanella et al Eur. Phys. J. A 11 (2001)

Example: linear case – Monte Carlo

*
$$x^{*}=6; y^{*}=y(x^{*})=26.26$$

* $\sigma_{y^{*}}^{2}=1.02$
* analytical: $\underline{y^{*}}=\underline{26.24};$
* $\sigma_{y^{*}}^{2}=1.0$

Another method

- ★ In the linear case, 1 parameter
- ★ Taylor expansion around the minimum:
- $\chi^2 = \chi^2_{min} + 1/2 \partial^2 \chi^2 / \partial a^2 (a a_{min})^2$
- ★ but $\sigma_a^2 = |1/2 \partial^2 \chi^2 / \partial a^2|^{-1} \rightarrow \text{if } a = a_{\text{low}} = a_{\text{min}} \sigma_a \text{ or } a = a_{\text{high}} = a_{\text{min}} + \sigma_a$ then $\chi^2 = \chi^2_{\text{min}} + 1$
- ★ Many parameters: pay attention to correlation
- ★ Non linear case: pay attention to strong asymmetry

i.e. $(a_{\min}-a_{low}) \neq (a_{high}-a_{\min})$

★ a=4.227 ; b=0.879
★ σ²_a= 0.044 ; σ²_b = 0.203
★ error matrix for cov(a,b)
★ σ²_a= 0.024 ; σ²_b = 0.113
i.e. don't forget covariance

What's about normalization errors?

In some cases they are neglected in the fit, and later used to estimate the

uncertainties. A bettar procedure is to fit the unnormalized(i.e. uncorrelated data):

- ★ let $y_{i_k,k} = c_k z_{i_k,k} k = 1,..,n$ be n measurements with $i_k = 1,..,n_k$ points each
- ***** Model $Y_k = f_k (X_k; A_1, \dots, A_m)$
- ★ $Q = \sum_{k} \{ \sum_{i_{k}, k} -f(x_{i}; a_{1}, ..., a_{m}) / c_{k} \}^{2} / \sigma_{y_{i_{k}}}^{2} + (c_{k} a_{m+1})^{2} / \sigma_{c_{k}}^{2} \}$
- * hopefully: Q-> χ^2 distribution with v= Σ_k n_k -m n degrees of freedom

G. D'Agostini, NIM A 346(1994)306 and references tl L. Gialanella- SLENA 2012, Kolkata, India

An example

★ $Y_1 = f_1(X; A_1, A_2, A_3) = A_1 + sqrt(A_2) \cdot X$ ★ $Y_2 = f_2(X; A_1, A_2, A_3) = A_1 + A_2 \cdot X/3 + A_3^{-2} \cdot X^3$

- ★ True parameter values ★ $A_1=1$; $A_2=2$; $A_3=3$;
- ★Normalization:

★ True normalization values ★ $c_1=1.2$; $c_2=1$

Fit without normalization constants

Fit with normalization constants

R-matrix fit to the s_{E1} - no normalization

R-matrix fit to the s_{E1} - with normalization

R-matrix fit to the s_{E1} - no normalization

R-matrix fit to the s_{E1} – with normalization

Rmatrix - Monte Carlo

For a full calculation, including normalization and using MonteCarlo, see D. Schürmann et al., PLB 2012

summary

To which cases do these consideration apply?

- ★ Efficiency
- \star calibration
- ★ Relative measurements

★ etc

So: to which cases these consideration do not apply?

★ few

Special attention must be paid to high precision experiments