

Lecture 3: detectors Lucio Gialanella Dipartimento di Matematica e Fisica Seconda Università di Napoli and INFN – Napoli Naples, Italy

No natural background

Radiative captures reactions

as an example: $X(\alpha, \gamma)Y$

Cosmic background Natural radioactivity

¹²C(⁴He, γ) ¹⁶O Stuttgart

IIII I

Laboratory for Underground

Nuclear Astrophysics

LNGS (shielding \equiv 4000 m w.e.)

LUNA 1 (1992-2001) 50 kV

> LUNA 2 (2000→...)

2012?

RadiationLNGS/surfaceMuons10-6Neutrons10-3

Courtesy LUNA collaboration INFN

RMS : working principle

courtesy D. Schuermann

Cosy Infinity M. Berz MSU

Beam purification system Wien-Filters

$N_{\text{elastic}} = N_{\text{projectiles}} \times d\sigma_{\text{el}}(\theta, E) / d\Omega \times \delta n_{\text{target}} \times \Delta \Omega \times \varepsilon_{\text{el}}$

Current measurement at FC (without target)

Or altenatively

L. Gialanella- SLENA 2012, Kolkata, India

FC

Deviation from Rutherford using a mixture: ${}^{12}C(\alpha,\gamma){}^{16}O$ at 75°

+ normalization to get an absolute scale, e.g. ${}^{1}H({}^{19}F,\alpha\gamma){}^{16}O E_{r,cm}$ =323 keV

Angular acceptance along the gas target

Energy acceptance

+ beam energy variation

Why is acceptance so important? An example: ${}^{12}C(\alpha,\gamma){}^{16}O$ at $E_{cm}=1$ MeV

Required acceptance:27 mrad Actual acceptance: 24 mrad

Angular acceptance - experimental

Angular acceptance - experimental Energy acceptance - experimental

Charge state distribution

Mass identification

Recoil detection

Full acceptance

<u>Suppression</u> Separator: 10⁻¹⁰-10⁻¹¹ Detector : 10⁻³-10⁻⁶

Background and leaky beams

3MV Pelletron High intensity stable and radioactive (^{7,10}Be) ion beams (possible ²⁶Al)

> Plans: ⁷Be(p, γ)⁸B ¹²C(α , γ)¹⁶O ¹⁶O(α , γ)²⁰Ne ³³S(p, γ)³⁴Cl ^{14,15}N(α , γ)^{18,19}F SHE in nature