

Lecture 1: cross section and reaction yield Lucio Gialanella Dipartimento di Matematica e Fisica Seconda Università di Napoli and INFN – Napoli Naples, Italy

Nuclear reactions in stars

$$Y = N_a N_X \sigma v$$

but v has a distribution P(v)

$$Y = \int_0^\infty N_a N_X \sigma P(v) v dv = N_a N_X \langle \sigma v \rangle$$

P(*v*) -> Maxwell Boltzmann distribution

σ > if non resonant, dominated by the penetrability of the coulomb barrier

$$E_0 = f(Z_1, Z_2, T)$$

Note:resonances may shift the relevant energy in stars

This is the reason for separate, subsequent burnings

$$Sun : T_6 = 15$$

reaction	E ₀ (keV)	Integral
p+p	5.9	7 10-6
α+ ¹² C	56	5.9 10 ⁻⁵⁶
¹⁶ O+ ¹⁶ O	237	2.5 10 ⁻²³⁷

$$E(x) = E_0 - \int_{x_0}^x \frac{dE}{dx'} dx'$$

α particles in C SRIM calulation

$$E(x) = E_0 - \int_{x_0}^x \frac{dE}{dx'} dx'$$

α particles in C SRIM calulation

Some remarks:

1- Avoid intermediate thicknesses (if you know the width and if you can prepare appropriate targets)

2- Be aware that the derivated thick target yield will be affected by large uncertainties for weak resonances

3- Beam energy spread complicates things

4- We plotted yields as a function of the beam energy: that's not good

5-Note the reaction yield is not the counting rate in the detector

resonant+not resonant

Effective energy for the cs extracted from a yield

$$\int_{E_0 - \Delta E}^{E_{eff}} \sigma(E) dE = \frac{1}{2} \int_{E_0 - \Delta E}^{E_0} \sigma(E) dE$$

$$E_{eff} = \frac{\int_{E_0 - \Delta E}^{E_0} \sigma(E) E dE}{\int_{E_0 - \Delta E}^{E_0} \sigma(E) dE}$$

1

2

$$\frac{N_r}{N_p N_t} = \frac{\int_{E_0 - \Delta E}^{E_0} \sigma(E) dE}{\Delta E} = \sigma_{eff}$$

$$\sigma(E_{eff}) = \sigma_{eff}$$

Courtesy D. Schuermann

Gialanella et al. NIM A 376 (1996) 174-184

$^{25}Mg(p,\gamma)^{26}Al \ at E_p = 389.24 \pm 0.11 \ keV$

Table 1 Resonance parameters

Reaction	Resonance energy $E_{\rm R}$ (keV)	Resonance width Γ (eV)	Doppler broadening $\Delta E_{\rm D}$ (eV)	Beam spread $\Delta E_{\rm B}$ (eV)	HV + PV (kV)	Shift (keV)
23 Na(p, γ) 24 Mg	308.75 ± 0.06^{a}	<36 ^a	58ª	71	311.24	2.49 ± 0.06
$^{25}Mg(p,\gamma)^{26}Al$	316.11±0.11 ^b	<37ª	58ª	120	318.83	2.65 ± 0.11
$^{26}Mg(p,\gamma)^{27}Al$	$338.30 \pm 0.10^{\circ}$	$< 40^{a}$	59ª	101	340.80	2.50 ± 0.10
$^{25}Mg(p,\gamma)^{26}Al$	389.24 ± 0.11^{b}	$< 4^d$	62 ^a	72	392.17	2.93 ± 0.11

$^{13}C(p,\gamma)^{14}N \ E_p = 100 - 400 \ keV$

Experimental determination of reaction cross sections

Direct methods:

- very low cross sections
 -> low counting rates
- measure outside Gamow window mechanism)
- cosmic radiation + nat. roombckg
- Beam/target induced bckg

key improvements:

- Targets
- Detectors

- - -> extrapolation (reaction
 - -> background -> background

