

(Facility for Research in Experimental Nuclear Astrophysics) A National Facility Proposed by Nuclear & Atomic Physics Group Saha Institute of Nuclear Physics

P. Banerjee

The main goal of SLENA 2008 is to outline a road map of nuclear astrophysics research in India for the next 10 years by :

- identify the key-problems in nuclear astrophysics at present;
- □ collect the inputs necessary for the experimental facility;
- identify research interests and expertise of different research institutions and universities;
- strengthen ties between the existing nuclear physics laboratories, theoretical nuclear physics groups, and nuclear astrophysics modellers in India as well as abroad.

Measurements in Nuclear Astrophysics

Some key problems

FRENA – A brief description

The scope of research using FRENA in the initial stages

Relevance

Nuclear Astrophysics involves the study of

 Synthesis of Elements (Nucleosynthesis)
 Evolution of Cosmic sites (Early Universe, Interstellar medium, red giants, supernova, etc.)

> Our understanding of Nucleosysthesis and energy generation mechanism depends on our knowledge of the RATES OF REACTIONS OF ASTROPHYSICAL INTEREST

Therefore, we need to measure these rates

The reaction rate per particle-pair is

$$\langle \sigma v \rangle = \left(\frac{8}{\pi\mu}\right)^{\frac{1}{2}} \frac{1}{(kT)^{\frac{3}{2}}} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE$$

The probability of tunnelling through the Coulomb Barrier can be approximated by

$$P = \exp(-2\pi\eta) = \exp\left[-\left(\frac{E_G}{E}\right)^{\frac{1}{2}}\right]$$

where η is the Sommerfeld parameter and $2\pi\eta = 31.29Z_1Z_2\left(\frac{\mu}{E}\right)^{\frac{1}{2}}$
The cross-section can be written as

$$\sigma(E) \quad \alpha \quad \exp\left(-2\pi\eta\right)$$

The geometrical part of the cross-section depends on the De Broglie wavelength, i.e.,

$$\sigma(E) \quad \alpha \quad \pi \lambda_{db}^2 \quad \alpha \quad \frac{1}{E}$$

By combining these two expressions, the cross-section for chargedparticle reactions can be written as

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

By substituting this $\sigma(E)$ into the general expression for the reaction rate per particle-pair, we get

$$<\sigma v> = \left(\frac{8}{\pi\mu}\right)^{\frac{1}{2}} \frac{1}{(kT)^{\frac{3}{2}}} \int_0^\infty S(E) \exp\left[-\frac{E}{kT} - \left(\frac{E_G}{E}\right)^{\frac{1}{2}}\right] dE$$

Now, exp(-E/kT) is small at large energies, while $exp[-(E_G/E)^{0.5}]$ is small at low energies. The product of these two terms gives a value of the integral which peaks at an energy E_0 given by

$$E_0 = \left(\frac{bkT}{2}\right)^{\frac{2}{3}} = 1.22(Z_1^2 Z_2^2 \mu T^2)^{\frac{1}{3}} \text{ keV}$$

 E_{θ} is known as the effective burning energy

Stellar reactions occur at $E_0 \pm \Delta E_0/2$. This E_0 is far below the Coulomb barrier

Non-resonant reaction cross-sections decrease exponentially by orders of magnitudes at sub-Coulomb energies.

The low reaction cross-section near E_0 prevents a direct measurement in the Laboratory

Measurements are made at higher energies and extrapolated to E_0

The cross-section can be expressed as $\sigma(E) = S(E) E^{-1} exp(-2\pi\eta)$

nuclear origin Weak Energy Dependence

non-nuclear origin Strong Energy Dependence

S(E), the Astrophysical S-factor is extrapolated to lower energies

However, such extrapolations are often hazardous as seen from

Difficulties :

- a) the energy dependence of S(E) is different for different systems
- b) Presence of resonances and resonance-tails at low-energy lead to large errors

There is a need to account for all reaction contributions to extrapolate reliably:

direct component,
 resonance components
 electron screening

Therefore, the primary goal of Experimental Nuclear Astrophysics

Measurement of *σ(E)* at energies at or near the Gamow peak

Requirements for an Experimental facility

FRENA (a unique facility in India)

A 3 MV, high current Tandem accelerator

A 500 kV single-ended accelerator with a high-current ECR ion-source

State-of-the-art detector systems including Clover Ge detectors, large volume Nal (TI), BGO, Plastic scintillators, large area Si detectors, etc.

Sophisticated target laboratory

FRENA (Phase II) will have facilities for

Neutron-induced studies

Heavy-ion bunching

Magnetic spectrometer

The 3 MV Tandetron

- Terminal Voltage 0.2 to 3.0 MV
- Typical Beam Currents at 3 MV after quadrupole triplet lens:
 H⁺ 500 μA
 He²⁺ 200 μA
 Heavier Ions 20 50 μA
- Pulsed beam of H⁺, ²H⁺ and He²⁺
- Standard Terminal voltage Resolution 3x10⁻⁵ (△E/E) (100 V at 3 MV, i.e. Energy steps of less than a keV)
- Terminal Voltage stability ±300 V (GVM stabilization) ±80 V (slit stabilization)

Terminal Voltage ripple - 30 Vpp

Some key Problems in Nuclear Astrophysics

Study of the reaction ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

1

2

This reaction is one of the major uncertainties in the determination of the high energy solar neutrino flux that results from $^{7}Be(p,\gamma)^{8}B$

The reaction is also important for understanding the primordial ⁷Li abundance

Discrepancy persists between prompt and γ -ray activity data

The ¹⁴N/¹⁵N abundances are not well understood

These abundances are affected by a large number of reactions - ${}^{14}N(n,p){}^{14}C$, ${}^{14}N(n,\gamma){}^{15}N$, ${}^{14}C(n,\gamma){}^{15}C$, ${}^{15}N(n,\gamma){}^{16}N$, ${}^{14}C(p,\gamma){}^{15}N$, ${}^{18}O(p,\alpha){}^{15}N$, ${}^{15}N(p,\gamma){}^{16}O$, ${}^{15}N(p,\alpha){}^{12}C$, ${}^{14}C(a,\gamma){}^{18}O$, ${}^{17}O(p,\gamma){}^{18}F$ and ${}^{17}O(p,\alpha){}^{14}N$

Most of these reactions are important for ¹⁹F abundance also

3 The ¹⁴N(p,γ)¹⁵O reaction – the slowest CNO cycle reaction

Recent results are a factor of 2 less than the NACRE values At present, the ¹⁴N abundance in AGB stars is incompatible with AGB model predictions

4 Helium Burning Phase

The ${}^{12}C(\alpha,\gamma){}^{16}O$ is of central importance to stellar evolution.

This reaction helps to determine the mass of the core following He-burning, and the C/O ratio which greatly influences the future evolution of the star.

After years of concerted effort, **experimental rates do not agree with stellar model predictions** and the rate for this reaction is still not known with the required accuracy of about 20%.

Heavy-ion burning

The subsequent heavy-ion burning phases depend on the nucleosynthesis of ¹²C and ¹⁶O during the He-burning phase.

The ¹²C+¹²C, ¹²C+¹⁶O, and ¹⁶O+¹⁶O and capture of protons and alpha particles by the fusion products are important.

Neither the fusion processes, nor the subsequent proton and α capture reactions are sufficiently well known for reliable modeling of the later phases of stellar evolution.

The Ne-Na cycle

A recent measurement of the ²³Na (p, γ)²⁴Mg reaction rate shows an increase of the rate by a factor of 10 below T=0.1 GK

The competition from (p, γ) reduces the efficiency of the (p, α) channel and the Ne-Na set of reactions becomes a chain, not a cycle.

If Ne-Na cycle feeds the Mg-Al cycle more than expected, Mg-Al cycle nucleosynthesis becomes more efficient

²⁵Mg(p, γ)²⁶Al is important to measure

²²Ne(α , n)²⁵Mg - dominant source of neutrons for the s-process near T = 0.2 –0.3 GK in massive stars

Although the ²²Ne(α ,n)²⁵Mg reaction has been widely studied, the different data sets show large uncertainties, especially at energies below 1 MeV. Thus, new investigations of ²²Ne(α ,n)²⁵Mg are desirable.

The other neutron producing reaction is ${}^{13}C(\alpha,n){}^{16}O$

Nova nucleosynthesis studies (reactions initiated by protons)

Nuclear physics input to nova model calculations consists mainly of cross sections for p-induced reactions involving stable and unstable target nuclei, and β^+ -decay half-lives.

Main uncertainties affecting nova nucleosynthesis studies are localized in ${}^{18}F(p,\alpha){}^{15}O, {}^{25}AI(p,\gamma){}^{26}Si, {}^{26}AI^{g}(p,\gamma){}^{27}Si, and {}^{30}P(p,\gamma){}^{31}S.$

Possible Research areas with FRENA

Reaction	Coulomb barrier (MeV)	Q-value (MeV)	Temperature T ₉ (°K)	Gamow peak E _o (MeV)	Gamow window ∆E _o (MeV)
¹² C+ ¹² C	6.66	13.93	0.6 2.0	1.73 3.84	0.88 1.23
¹⁶ O+ ¹⁶ O	10.76	16.54	1.0 2.4	3.90 7.00	1.62 3.35
⁴ He+ ¹² C	3.10	7.16	0.2 0.6	0.31 0.66	0.17 0.42
¹⁵ N+p	1.71	4.96	0.2 3.0	0.15 0.91	0.12 1.12
³ He ⁺⁴ He	1.12	1.59	0.2 3.0	0.13 0.77	0.11 1.03

Study of Heavy-ion reactions

²³Mg + n, Q= -2.60 MeV ²³Na + p, Q= 2.24 MeV ²⁰Ne + α , Q= 4.62 MeV

Region of Astrophysical interest – 1 to 3 MeV

Occurs

- in massive stars in the late stages of stellar evolution
- in accreting neutron stars and
- in exploding white dwarfs producing type I supernovae

Why is ${}^{12}C + {}^{12}C$ Cross-section important?

- Nucleosynthesis of ²⁰Ne and ²³Na and subsequent evolution
- Times scale for stellar C burning
- Ignition conditions for type I SN

Study of Heavy-ion Reactions

- A. Detection of Light particles n, p, α
- B. Detection of heavy residues ²⁰Ne, ²³Na, ²³Mg
- C. Detection of the prompt γ -rays following de-excitation of residues in excited states. (residues formed directly in their ground state are not accessible)
- D. Residual activity method Detection of γ -rays following the decay of the residues in the g.s.

Recent results on ¹²C + ¹²C (E. F. Aguilera et al., PHYSICAL REVIEW C 73, 064601 (2006)

A simple calculation of cross-section at a lower energy

 $\sigma = 5.1 \times 10^{-9} \text{ b}$ at E = 2.46 MeVTherefore, $S = \sigma E e^{87.21/\sqrt{E}} = 17.5 \times 10^{15} \text{ MeV-b}$ Let us calculate $\sigma \alpha \tau E = 2.0 \text{ MeV}$ Assume S(2.0 MeV) = S(2.46 MeV)It turns out that $\sigma(2.0) = (17.5 \times 10^{15} / 2.0) e^{-87.21 / \sqrt{2.0}} = 1.46 \times 10^{-11} b$

 σ falls by more than 2 orders of magnitude

Further measurements in order to

Extend data to lower energies
 Large discrepancies in available data
 Large uncertainties at Low energies

Resonances in ¹²C + ¹²C reaction

E. F. Aguilera et al., PHYSICAL REVIEW C 73, 064601 (2006)

<u>Principal sources of uncertainty at</u> low Energies

- ¹H and ²H impurity in target
- Beam-induced and cosmic-ray background
- Carbon build-up

We propose to reduce target contamination by

□ Use of ¹²C deposited on baked Ta as target

□ Use of gas target (like CO)

The background a critical problem for low energy cross-section measurements

- Cosmic ray muons
- Muon-induced neutrons & radioactivity
- Radon & A=210 Pb-Bi-Po daughters
- Gamma and neutron emission from materials
- Radon emanation from materials
- Beam induced reactions

1. HPGe (582 cm³)

- 3. Lead shield (passive shielding)
- 4. Target (1.1 cm from detector face)
- 5. Plastic Scintillator (Five 50 mm thick plates arranged in a box; vetoes cosmic muon induced background; useful in sea-level, low yield experiments)

^{2.} NaI(Tl) (16 optically isolated crystals each with its own PMT in an annulus)

Relevance of FRENA

The stable beam facility (for exploring stellar quiescent burning) will complement the upcoming RIB facilities in the country (useful for studying explosive stellar burning)

There is a large group of experimentalists at SINP and in other laboratories in India working on nuclear structures and reactions. FRENA will utilize this enormous experience and expertise.

Theoretical Nuclear Astrophysicists in the country and at SINP will contribute to and benefit from FRENA.

Open up international Collaboration

Proposed Research Activities (using 500kV Accelerator)

- ³He(⁴He, γ)⁷Be (E₀ = 130-750 keV)
- The ³He(⁴He,g)⁷Be reaction is one of the remaining major sources of uncertainty in determining the high energy solar neutrino flux that results from ⁷Be(p,γ)⁸B

UNDERGROUND MEASUREMENTS

- The ratio of the S(0) factor for ¹⁵N(p,α)¹²C and ¹⁵N(p,γ)¹⁶O determines the relative contributions of the first and the second cycle to the total rate of energy production.
- The second cycle (reached by ¹⁵N(p,γ)¹⁶O capture process) is important for the nucleosynthesis of ¹⁶O and ¹⁷O

LUNA: future with the 400 kV facility and even more...

Reaction	Q-value (MeV)	Burning energy (keV)	Lowest meas. energy (keV)	LUNA limit (keV, estimate)
¹⁵ N(p,γ) ¹⁶ O	12.13	10-300	130	50
¹⁷ Ο(p,γ) ¹⁸ F	5.6	35-260	300	65
¹⁸ Ο(p,γ) ¹⁹ F	8.0	50-200	143	89
²² Ne(p,γ) ²³ Na	8.8	50-300	250	68
²³ Na(p, y) ²⁴ Mg	11.7	100-200	240	138
² Η(α,γ) ⁶ Li	1.47	50-300	700 (direct)	50
			50 (indirect)	
¹² <i>C</i> (α,γ) ¹⁶ <i>O</i>	7.16	300	950	500
¹⁵ N(α,γ) ¹⁹ F	4.01	364	536	364
¹³ <i>C</i> (α, n) ¹⁶ <i>O</i>	2.21	170-250	270	200
²² Ne(a,n) ²⁵ Mg	-0.47	470-700	850	630

NACRE - Nuclear Astrophysics Compilation of REaction Rates

Existing Facilities worldwide for Nuclear Astrophysics

1. LENA at TUNL (Triangle Universities Nuclear Laboratories) at North Carolina, USA:

a) 200 kV high current accelerator (up to 5 mA)

b) 1 MV Van de Graaff (up to $100 \,\mu$ A)

- 2. LUNA at Gran Sasso, Italy LUNA I – 50 kV (1992-2001) LUNA II – 400 kV (2000-2006)
- **3. ERNA (European Recoil Separator for Nuclear Astrophysics) at Bochum, Germany**

4 MV Dynamitron Tandem Accelerator

4. JINA at Notre Dame

Have several accelerators; currently (since 1993) a 3.5 MV Van de Graaff is in use for studies in Nuclear Astrophysics

Backgrounds can be measured and subtracted

- In narrow resonances, background can be measured by running at energies just above or below the resonant energy
- Otherwise, substitute the target by a chemically similar target (especially for gas targets)

FRENA- Floor Layout

Schedule of Machinery & Equipment

		Pro	Probable	Probable date of Purchase Order (mm/yy) Likely date of delivery (mm/yy)	Phasing of Expenditure					
Sr. No.	Item Description	Estimat ed Cost (lakhs)	date of Purchase Order (mm/yy)		1 st Year *	2 nd Year*	3 rd Year	4 th Year	5 th Year	XII Plan
1.	3 MV Tandetron with	3000	April, 2008	October, 2009	500	1500	800	200	-	3000
2.	Liquid Nitrogen plant	50	April, 2009	June, 2009	-	-	40	5	5	50
3.	Chilled Low- Conductivity water system	50	April, 2009	June, 2009	-	-	40	5	5	50
4.	Computers and networking	50	April, 2009	December 2009	-	-	30	10	-	40
5.	Detectors, Electronics, Data Acquisition systems	250	September, 2009	March, 2010	-		100	40	-	140
6.	500 kV Accelerator	200	October, 2010	Septembe r, 2011	-	-	-	100	60	160

Stellar burning rates $\langle \sigma v \rangle = \int \sigma(E) \cdot E \cdot exp(-E/kT) dE$ ASTROPHYSICAL 5(E)-FACTOR $\sigma(E) = E^{-1} \exp(-2\pi\eta) S(E)$ non-nuclear origin nuclear origin WEAK energy dependence. $2\pi\eta = 31.29 Z_1 Z_2 (\mu/E)^{\dagger}$ **Gamow factor** μ in any and E_{re} in keV Energy available from thermal motion kT ~ 8.6 x 10⁻⁸ T[K] keV $T \sim 15 \times 10^{9} \text{ K}$ (e.g. our Sun) $\Rightarrow kT \sim 1 \text{ keV}$ $T \sim 10^{10} \text{ K}$ (Big Bong) $\Rightarrow \text{ kT} \sim 2 \text{ MeV}$

Maximum reaction rate at E₀

$$\begin{split} E_{\rm g} = & \left(\frac{bkT}{2}\right)^{3/2} = 0.122 \left(Z_{\rm g}^2 Z_{\rm g}^2 A\right)^{1/3} T_{\rm g}^{3/3} \quad {\rm MeV} \\ \Delta E = & \frac{4}{\sqrt{3}} \sqrt{E_{\rm g} kT} = 0.237 \left(Z_{\rm g}^2 Z_{\rm g}^2 A\right)^{1/3} T_{\rm g}^{3/6} \quad {\rm MeV} \end{split}$$

Data EXTRAPOLATION down to astrophysical energies is NEEDED |

CNO Cycles

Switching magnet type "A" (first one directly after the accelerator)

: 5 exit ports at +20°, 0°, -15° and -30°
: at +/- 30°: 32 MeV.AMU
: at +/- 20°: 72 MeV.AMU
: at +/- 15°: 125 MeV.AMU
: at +/- 10°: 284 MeV.AMU
: 32 mm
: 10-4
: 2 x 10 ⁻⁴

 p_1 ⇒0.440 MeV γ-ray of ²³Na in the ²³Na+p channel. α_1 ⇒1.634 MeV γ-ray of ²⁰Ne in the ²⁰Ne+α channel

Beam transport at 200 kV about 25% of injected beam Switching magnet ports 1) 20, 0, -15 and -30 degrees 2) 30, 15, 0 and -20 degrees

 $ME/q^2 = 32 MeV.AMU at 30 deg.$ = 72 MeV.AMU at 20 deg. = 125 MeV.AMU at 15 deg.

Energy resolution of a 50-100 μ A, 3 MeV H beam = 250 eV (10⁻⁴) mainly due to energy straggling in the stripper

No foil stripper to avoid worse energy resolution

Beam position stability within 50 μ m

Beam purity is more important in ${}^{12}C({}^{4}He,\gamma){}^{16}O$ where a small impurity of ${}^{16}O$ in the beam would lead to large errors (since a small number of ${}^{16}O$ product nuclei are to be detected)

Charge-particle (p) detection in ${}^{12}C+{}^{12}C$ would also be difficult if there is H contaminant in the target; contaminant H, elastically scattered would have to be identified from p in the ${}^{23}Na+p$ channel

 ^{12}C +p capture has a resonance at $E_{\rm cm}$ = 2.25 MeV $E\gamma$ = 2.37 MeV

Fig. 6. (a) Sample γ -ray spectrum obtained with a standard carbon target at $E_{iab}(^{12}C) = 6.00$ MeV. The spectra obtained in this beam energy range are dominated by background radiation created by the interaction of the ¹²C beam with the ¹H and ²H contaminations (few atom %) in the target. (b) Sample γ -ray spectrum at $E_{iab}(^{12}C) = 5.70$ MeV obtained with a 13 µg/cm² thick carbon target of low hydrogen contamination (0.02 atom %). The well-known $E_p = 457$ keV resonance ($\Gamma = 39$ keV) in ¹²C(p, γ)¹³N corresponds in the inverse reaction ¹H(¹²C, γ)¹³N to an energy of $E_{cm}(^{12}C+^{12}C) = 2.74$ MeV

Nucleosynthesis History

Beam Pulsing - Klystron Buncher

VELOCITY MODULATION

- An electron beam moves -* a constant speed towards 1 (a grids, G1 and G2, connecte to opposite ends of a tuned circuit.
- A RF electric field is produced between G1 and

 At certain instants of timelectrons arriving at G1 wi (b) be accelerated if they are moving in the same directias the field, one quarter of cycle later they will be unaffected and a half cycle atter they will be glowed down because they are moving in the opposite direction to the field.

ANNEXURE-D

Schedule of proposed major activities of the project

Sl No	Major activity	Cost (lakhs)	% weightage	Start Date (mm/yy)	Completion date (mm/yy)
1	Installation of 3 MV Tandetron along with one beam line	3000	85.8	To be delivered in October, 2009	To be assembled by April, 2010
2	Installation of LCW and Liquid Nitrogen Plant	100	2.8	June, 2009	September, 2009
3	Computers and Networking	40	1.1	August, 2009	November, 2009
4	Setting up of Detectors, Electronics, Data Acquisition systems	140	4.0	October, 2009	February, 2010
5	First Experiment using FRENA			June, 2010	
6	Development of 500 kV Accelerator	160	4.6	October, 2010	September, 2011
7	Preliminary measurements of the beam characteristics of 500 kV machine			January 2112	

FRENA is a National Facility, being developed by SINP

We have discussed the Proposal at various meetings attended by Scientists from India and abroad

If necessary, we will enter into a national level collaboration subsequently

- 1. Machine stability
- 2. HVEE machine at other places
- 3. How can we improve upon the existing data

21.05 m

Dual Source Injector for H & He

- A Multi-cusp ion source for H;
- B Multi-cusp ion source for He;
- C Li Charge exchange column;
- **D** +/- 30° switching magnet

A Filament discharge Multi-cusp Ion source

The magnetic field generated by the Sm-Co permanent magnets efficiently confine the primary ionizing electrons.

Heavy-ion source (SNICS type)

- Multi target (up to 50 targets) sputter ion source with automatic changing of sputter targets for prolonged beam times
- Computer-controlled insertion of target at pre-set time intervals

Specifications of the Analyzing Magnet

ME/q ²	
Bending radius	
Maximum magnetic	field
Stability (over 1	hour)
(over 8	hours

48 AMU-MeV 1500 mm 0.67 Tesla 10⁻⁵ 3 x 10⁻⁵

Pulsed beam operation (2 & 4 MHz)

 Pulse-Intensity: (for pulse-width of 2 ns FWHM) Pulse intensity (charge) in epC
 Species Energy Guaranteed Expect
 H⁺ 4 MeV 7.5 12.5
 D⁺ 4 MeV 5.0 10.0

The 500 kV Electrostatic accelerator

Will consist of
A Cockroft-Walton type high voltage supply
High-current ECRIS ion-source
Necessary analyzing and steering magnets

This low energy accelerator will be developed using the available expertise in the country.

To be used for studying the reactions of the H and Heburning Phases, using H and He beams.

The facility, when developed and tested, would be housed underground once laboratory becomes available.

Budgetary Figures

ltem	Cost (Rs. lacs)	Progressive total
3 MV Tandetron	3000	3000
Detectors + Electronics	140	3140
Computers and networking	40	3180
LCW + Liquid N ₂ Plant	100	3280
500 KV Accelerator	160	3440
Salary + Travel + Cont.	60	3500

Space requirement

Power requirement

100 kW

Additional Manpower Requirement:

(1)	Technical		Engineers – 2 (Civil – 1,
		l	Electrical – 1);
			Scientific Officers - 3
(2)	Auxiliary	:	1
		Total	6

Scientific Officers – installation, operation and maintenance of 3 MV Tandetron

Existing Man-power – Experimental Nuclear Physics Group at SINP

The Group is working in active collaboration with scientists from IUAC, New Delhi and VECC, Kolkata

Milestones

SI. No.	Major activity	Cost (lacs)	Start Date (mm/yy)	Completion date (mm/yy)
1	Infrastructure Development (Building, Laboratories, etc.)	800	April, 2007	September, 2009
2	Laying and distribution of Electrical Power lines, UPS, Air Conditioning,	200	April, 2009	September, 2009
3	LCW + Liquid Nitrogen Plant	100	June 2009	September '09
4	Installation of 3 MV Tandetron along with one beam line	3000	Delivery in October, 2009	To be assembled by April, 2010
5	Computers and Networking	40	August '09	November '09
6	Setting up of Detectors, Electronics, Data Acquisition systems	140	October, 2009	February, 2010
7	First Experiment using FRENA		June, 2010	
8	Development of 500 kV Accelerator	160	October, 2010	September, 2011
9	Preliminary measurements of the beam characteristics of 500 kV machine		January 2012	

Measurement of reaction cross-sections

Methods of measurement depend on the detection of the products. Example:

¹²C+¹²C ²⁰Ne+α ²³Na+p <u>²³Mg+n</u>

- i) Light particle method \Rightarrow Detection of n, p, α
- ii) Heavy residue method \Rightarrow " of ²⁰Ne, ²³Na, ²³Mg Difficult at low energies. a) low K.E. of the residues b) large elastic events.
- iii) γ -ray method \Rightarrow Detection of the γ -rays following de-excitation of residues in excited states.
- iv) Residual activity method \Rightarrow Detection of the γ -rays following the decay of the residues in the g.s.